On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 802-809

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{75,72,1;1,12,75\}$. It is proved that this graph does not vertex-symmetric.
Keywords: distance-regular graph
Mots-clés : automorphism group, antipodal cover.
@article{SEMR_2015_12_a25,
     author = {A. A. Makhnev and N. V. Chuksina},
     title = {On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {802--809},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a25/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - N. V. Chuksina
TI  - On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 802
EP  - 809
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a25/
LA  - ru
ID  - SEMR_2015_12_a25
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A N. V. Chuksina
%T On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 802-809
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a25/
%G ru
%F SEMR_2015_12_a25
A. A. Makhnev; N. V. Chuksina. On automorphisms of a distance-regular graph with intersection array $\{75,72,1;1,12,75\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 802-809. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a25/