Distributive elements of the lattice of epigroup varieties
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 723-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

We completely classify all distributive and standard elements of the lattice of epigroup varieties.
Keywords: epigroup, variety, distributive element, standard element.
@article{SEMR_2015_12_a23,
     author = {D. V. Skokov},
     title = {Distributive elements of the lattice of epigroup varieties},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {723--731},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a23/}
}
TY  - JOUR
AU  - D. V. Skokov
TI  - Distributive elements of the lattice of epigroup varieties
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 723
EP  - 731
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a23/
LA  - ru
ID  - SEMR_2015_12_a23
ER  - 
%0 Journal Article
%A D. V. Skokov
%T Distributive elements of the lattice of epigroup varieties
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 723-731
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a23/
%G ru
%F SEMR_2015_12_a23
D. V. Skokov. Distributive elements of the lattice of epigroup varieties. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 723-731. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a23/

[1] B. M. Vernikov, V. Yu. Shaprynskii, “Distributivnye elementy reshetki mnogoobrazii polugrupp”, Algebra i logika, 49:3 (2010), 303–330 | MR | Zbl

[2] M. V. Sapir, E. V. Sukhanov, “O mnogoobraziyakh periodicheskikh polugrupp”, Izv. vuzov. Matem., 1981, no. 4, 48–55 | MR

[3] V. Yu. Shaprynskii, “Distributivnye i neitralnye elementy reshetki kommutativnykh mnogoobrazii polugrupp”, Izv. vuzov. Matem., 2011, no. 7, 67–79 | MR

[4] L. N. Shevrin, “K teorii epigrupp. I; II”, Matem. sb., 185:8 (1994), 129–160 | MR | Zbl

[5] G. Grätzer, Lattice Theory: Foundation, Birkhäuser, Springer Basel AG, 2011 | MR | Zbl

[6] G. Grätzer, E. T. Schmidt, “Standard ideals in lattices”, Acta Math. Acad. Sci. Hungar., 12:1 (1961), 17–86 | MR | Zbl

[7] S. V. Gusev, B. M. Vernikov, Epimorphisms of the lattice of epigroup varieties, 11.06.2015, 22 pp., arXiv: 1404.0478v4

[8] J. Ježek, “The lattice of equational theories. I: Modular elements”, Czechosl. Math. J., 31:1 (1981), 127–152 | MR | Zbl

[9] V. Yu. Shaprynskiǐ, D. V. Skokov, B. M. Vernikov, Special elements of the lattice of epigroup varieties, 02.08.2014, 27 pp., arXiv: 1408.0356v1

[10] Shevrin L. N., “Epigroups”, Structural Theory of Automata, Semigroups, and Universal Algebra, Springer, Dordrecht, 2005, 331–380 | DOI | MR

[11] D. V. Skokov, “Special elements of the lattice of epigroup varieties”, Groups and Graphs, Algorithms and Automata, Abstracts of the Int. Conf. and PhD Summer School in honour of the 80th Birthday of Professor V. A. Belonogov and of the 70th Birthday of Professor V. A. Baransky, Ekaterinburg, 2015, 86

[12] B. M. Vernikov, “Upper-modular elements of the lattice of semigroup varieties”, Algebra Universalis, 59:3–4 (2008), 405–428 | DOI | MR | Zbl

[13] B. M. Vernikov, “Special elements in lattices of semigroup varieties”, Acta Sci. Math. (Szeged), 81:1–2 (2015), 79–109 | DOI