On some of logical closures on universal algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 698-703.

Voir la notice de l'article provenant de la source Math-Net.Ru

B.I. Plotkin has introduced some concepts of logical geometries on universal algebras. Here we study one of the related logical closure operators on sets of elements of an algebra definable by quantifier–free formulas using some quasiorder on the basic set of this algebra.
Keywords: algebraic geometry, universal algebra, closure operator.
@article{SEMR_2015_12_a21,
     author = {A. G. Pinus},
     title = {On some of logical closures on universal algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {698--703},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a21/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - On some of logical closures on universal algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 698
EP  - 703
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a21/
LA  - ru
ID  - SEMR_2015_12_a21
ER  - 
%0 Journal Article
%A A. G. Pinus
%T On some of logical closures on universal algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 698-703
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a21/
%G ru
%F SEMR_2015_12_a21
A. G. Pinus. On some of logical closures on universal algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 698-703. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a21/

[1] B. I. Plotkin, “Nekotorye ponyatiya algebraicheskoi geometrii v universalnoi algebre”, Algebra i analiz, 9:4 (1997), 224–248 | MR | Zbl

[2] B. Plotkin, “Some results and problems related to universal algebraic geometry”, Int. J. Algebra Comput., 17:5–6 (2007), 1133–1164 | MR | Zbl

[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups, eds. B. Fine et al., World Sci, Hackensack, NJ, 2008, 80–111 | MR | Zbl

[4] A. G. Pinus, “Uslovnye termy i ikh prilozhenie v algebre i teorii vychislenii”, Uspekhi matemat. nauk, 56:4 (2001), 35–72 | MR | Zbl

[5] A. G. Pinus, Uslovnye termy i ikh primenenie v algebre i teorii vychislenii, Izd-vo NGTU, Novosibirsk, 2002

[6] A. G. Pinus, “Novye algebraicheskie invarianty dlya formulnykh podmnozhestv universalnykh algebr”, Algebra i logika, 50:2 (2011), 209–230 | MR | Zbl

[7] B. Plotkin, “Unityped algebras”, Proc. of the Steklov Institut of Math., 278, no. 1, 2012, 91–115 | Zbl

[8] B. Plotkin, G. Zhitomirski, “Some logical invariants of algebras and logical relations between algebras”, Algebra i analiz, 19:5 (2007), 214–245 | MR

[9] A. G. Pinus, “O kvaziporyadke indutsirovannom vnutrennimi gomomorfizmami universalnykh algebr i ob operatore algebraicheskogo zamykaniya na mnozhestve iz etikh algebr”, Sibirskii matematicheskii zhurnal, 56:3 (2015), 629–636 | MR | Zbl

[10] A. G. Pinus, “O Ihm-dozvolennykh i Ihm-zapreschennykh kvaziporyadkakh”, Izvestiya VUZov. Matematika (to appear)