On some of logical closures on universal algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 698-703

Voir la notice de l'article provenant de la source Math-Net.Ru

B.I. Plotkin has introduced some concepts of logical geometries on universal algebras. Here we study one of the related logical closure operators on sets of elements of an algebra definable by quantifier–free formulas using some quasiorder on the basic set of this algebra.
Keywords: algebraic geometry, universal algebra, closure operator.
@article{SEMR_2015_12_a21,
     author = {A. G. Pinus},
     title = {On some of logical closures on universal algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {698--703},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a21/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - On some of logical closures on universal algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 698
EP  - 703
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a21/
LA  - ru
ID  - SEMR_2015_12_a21
ER  - 
%0 Journal Article
%A A. G. Pinus
%T On some of logical closures on universal algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 698-703
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a21/
%G ru
%F SEMR_2015_12_a21
A. G. Pinus. On some of logical closures on universal algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 698-703. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a21/