The Identities of vector spaces embedded in a linear algebra
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 328-343.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the identities of vector spaces embedded in linear algebras. We prove that the identities of the class of all vector spaces embedded in associative algebras do not follow from a finite set of the identities that are true in this class. Similar result is proved for the spaces embedded in Lie algebras. We constructed the example of a four-dimensional algebra over a field of characteristic zero which is a strongly not finitely based. The authors describe strongly nonfinitely based vector spaces that are finite-dimensional associative algebras with unity over a field of characteristic zero.
Mots-clés : Multiplicative vector pair, associative algebras, Lie algebras
Keywords: identity of pair, $L$-variety, linear algebra, inherently nonfinitely based algebra, strongly nonfinitely based algebra.
@article{SEMR_2015_12_a14,
     author = {I. M. Isaev and A. V. Kislitsin},
     title = {The {Identities} of vector spaces embedded in a linear algebra},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {328--343},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a14/}
}
TY  - JOUR
AU  - I. M. Isaev
AU  - A. V. Kislitsin
TI  - The Identities of vector spaces embedded in a linear algebra
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 328
EP  - 343
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a14/
LA  - ru
ID  - SEMR_2015_12_a14
ER  - 
%0 Journal Article
%A I. M. Isaev
%A A. V. Kislitsin
%T The Identities of vector spaces embedded in a linear algebra
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 328-343
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a14/
%G ru
%F SEMR_2015_12_a14
I. M. Isaev; A. V. Kislitsin. The Identities of vector spaces embedded in a linear algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 328-343. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a14/

[1] I. Z. Golubchik, A. V. Mikhalëv, “O mnogoobraziyakh algebr s polugruppovym tozhdestvom”, Vestnik MGU. Seriya 1. Matematika, mekhanika, 65:2 (1982), 8–11 | MR

[2] I. M. Isaev, “Suschestvenno beskonechno baziruemye mnogoobraziya algebr”, Sibirskii matematicheskii zhurnal, 30:1 (1989), 75–77 | MR

[3] I. M. Isaev, A. V. Kislitsin, “Primer prostoi konechnomernoi algebry, ne imeyuschei konechnogo bazisa tozhdestv”, Doklady Akademii nauk, 447:3 (2012), 252–253 | MR | Zbl

[4] I. M. Isaev, A. V. Kislitsin, Tozhdestva vektornykh prostranstv, vlozhennykh v assotsiativnye algebry, http://www.math.nsc.ru/conference/malmeet/13/maltsev13.pdf

[5] I. M. Isaev, A. V. Kislitsin, “Tozhdestva vektornykh prostranstv i primery konechnomernykh lineinykh algebr, ne imeyuschikh konechnogo bazisa tozhdestv”, Algebra i logika, 52:4 (2013), 435–460 | MR | Zbl

[6] A. R. Kemer, “O nematrichnykh mnogoobraziyakh”, Algebra i logika, 19:3 (1980), 255–283 | MR

[7] I. V. Lvov, “Konechnomernye algebry s beskonechnymi bazisami tozhdestv”, Sibirskii matematicheskii zhurnal, 19:1 (1978), 91–99 | MR | Zbl

[8] Yu. N. Maltsev, V. A. Parfenov, “Primer neassotsiativnoi algebry, ne dopuskayuschei konechnogo bazisa tozhdestv”, Sibirskii matematicheskii zhurnal, 18:6 (1977), 1420–1421 | MR | Zbl

[9] V. L. Murskii, “O chisle $k$-elementnykh algebr s odnoi binarnoi operatsiei bez konechnogo bazisa tozhdestv”, Problemy kibernetiki, 35:1 (1979), 5–27 | MR

[10] S. V. Polin, “O tozhdestvakh konechnykh algebr”, Sibirskii matematicheskii zhurnal, 17:6 (1976), 1356–1366 | MR | Zbl

[11] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka. Gl. red fiz.-mat. lit., M., 1989 | MR

[12] L. M. Samoilov, “Zamechanie o trekhchlennykh tozhdestvakh v assotsiativnykh algebrakh”, Matematicheskie zametki, 65:2 (1999), 254–260 | DOI | MR | Zbl

[13] M. V. Sapir, “Problemy bernsaidovskogo tipa i konechnaya baziruemost v mnogoobraziyakh polugrupp”, Izvestiya AN SSSR, 51:2 (1987), 319–340 | MR | Zbl

[14] M. V. Sapir, “Suschestvenno beskonechno baziruemye konechnye polugruppy”, Matematicheskii sbornik, 133:2 (1987), 154–166 | MR | Zbl

[15] V. T. Filippov, V. K. Kharchenko, I. P. Shestakov, Dnestrovskaya tetrad. Nereshennye problemy teorii kolets i modulei, 4-e izd., Izd-vo Instituta matematiki, Novosibirsk, 1993 | MR | Zbl

[16] L. N. Shevrin, M. V. Volkov, “Tozhdestva polugrupp”, Izvestiya vuzov, 282:11 (1985), 3–47 | MR | Zbl

[17] I. M. Isaev, A. V. Kislitsin, “Example of simple finite dimensional algebra with no finite basis of its identities”, Communications in Algebra, 41:12 (2013), 4593–4601 | DOI | MR | Zbl

[18] M. Jackson, M. Volkov, “Relatively inherently nonfinitely $Q$-based semigroups”, Trans. Amer. Math. Soc., 361:4 (2008), 2181–2206 | DOI | MR

[19] W. Specht, “Gesetze in Ringen, I”, Mathematische Zeitschrift, 52:5 (1950), 557–589 | DOI | MR | Zbl