Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 318-327
Voir la notice de l'article provenant de la source Math-Net.Ru
Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{169,126,1;1,42,169\}$. It is obtained the description of vertex-transitive distance-regular graph with intersection array $\{169,126,1;1,42,169\}$ and nonsovable automorphism group.
Keywords:
distance-regular graph
Mots-clés : automorphism group, antipodal cover.
Mots-clés : automorphism group, antipodal cover.
@article{SEMR_2015_12_a13,
author = {A. M. Kagazezheva},
title = {Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {318--327},
publisher = {mathdoc},
volume = {12},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/}
}
TY - JOUR
AU - A. M. Kagazezheva
TI - Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2015
SP - 318
EP - 327
VL - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/
LA - ru
ID - SEMR_2015_12_a13
ER -
A. M. Kagazezheva. Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 318-327. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/