Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 318-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{169,126,1;1,42,169\}$. It is obtained the description of vertex-transitive distance-regular graph with intersection array $\{169,126,1;1,42,169\}$ and nonsovable automorphism group.
Keywords: distance-regular graph
Mots-clés : automorphism group, antipodal cover.
@article{SEMR_2015_12_a13,
     author = {A. M. Kagazezheva},
     title = {Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {318--327},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/}
}
TY  - JOUR
AU  - A. M. Kagazezheva
TI  - Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 318
EP  - 327
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/
LA  - ru
ID  - SEMR_2015_12_a13
ER  - 
%0 Journal Article
%A A. M. Kagazezheva
%T Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 318-327
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/
%G ru
%F SEMR_2015_12_a13
A. M. Kagazezheva. Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 318-327. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/

[1] Makhnev A. A., “O silno regulyarnykh grafakh s sobstvennym znacheniem 3 i ikh rasshireniyakh”, Doklady akademii nauk, 451:5 (2013), 501–504 | DOI | MR | Zbl

[2] Kagazezheva A. M., Makhnev A. A., “O grafakh, v kotorykh okrestnosti vershin silno regulyarny s parametrami $(111,30,5,9)$ ili $(169,42,5,12)$”, Doklady akademii nauk, 456:2 (2014), 135–139 | DOI | MR | Zbl

[3] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[4] Godsil C. D., Henzel A. D., “Distance-regular covers of the complete graphs”, J. Comb. Theory, ser. B, 56 (1992), 205–238 | DOI | MR | Zbl

[5] Cameron P. J., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[6] Gavrilyuk A. L., Makhnev A. A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Doklady akademii nauk, 432:5 (2010), 583–587 | MR | Zbl

[7] Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl

[8] Kolpakova V. A., Kondratev A. S., Khramtsov I. V., “O konechnykh gruppakh, imeyuschikh nesvyaznyi graf prostykh chisel i kompozitsionnyi faktor, izomorfnyi $Sp_4(4)$”, Mezhd. konf «Maltsevskie chteniya», Tez. dokl. (Novosibirsk, 2015), 105