Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 318-327

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{169,126,1;1,42,169\}$. It is obtained the description of vertex-transitive distance-regular graph with intersection array $\{169,126,1;1,42,169\}$ and nonsovable automorphism group.
Keywords: distance-regular graph
Mots-clés : automorphism group, antipodal cover.
@article{SEMR_2015_12_a13,
     author = {A. M. Kagazezheva},
     title = {Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {318--327},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/}
}
TY  - JOUR
AU  - A. M. Kagazezheva
TI  - Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 318
EP  - 327
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/
LA  - ru
ID  - SEMR_2015_12_a13
ER  - 
%0 Journal Article
%A A. M. Kagazezheva
%T Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 318-327
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/
%G ru
%F SEMR_2015_12_a13
A. M. Kagazezheva. Automorphisms of a graph with intersection array $\{169,126,1;1,42,169\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 318-327. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a13/