On periodic groups saturated with a finite set of groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 321-326

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a periodic group saturated with a finite set of groups of the form $L\times E$, where $E$ is a finite elementary abelian 2-group and $L$ is a finite simple non-abelian group, which is not isomorphic to $E_6(q)$, $^2E_6(q)$, $U_n(q)$ or $L_n(q)$ for odd $q$ and $n\geq 4$. We prove that $G$ is finite.
Keywords: Direct product of groups, periodic group
Mots-clés : saturation.
@article{SEMR_2014_11_a8,
     author = {I. V. Sabodakh},
     title = {On periodic groups saturated with a finite set of groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {321--326},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a8/}
}
TY  - JOUR
AU  - I. V. Sabodakh
TI  - On periodic groups saturated with a finite set of groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 321
EP  - 326
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a8/
LA  - ru
ID  - SEMR_2014_11_a8
ER  - 
%0 Journal Article
%A I. V. Sabodakh
%T On periodic groups saturated with a finite set of groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 321-326
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a8/
%G ru
%F SEMR_2014_11_a8
I. V. Sabodakh. On periodic groups saturated with a finite set of groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 321-326. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a8/