On periodic groups saturated with a finite set of groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 321-326
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a periodic group saturated with a finite set of groups of the form $L\times E$, where $E$ is a finite elementary abelian 2-group and $L$ is a finite simple non-abelian group, which is not isomorphic to $E_6(q)$, $^2E_6(q)$, $U_n(q)$ or $L_n(q)$ for odd $q$ and $n\geq 4$. We prove that $G$ is finite.
Keywords:
Direct product of groups, periodic group
Mots-clés : saturation.
Mots-clés : saturation.
@article{SEMR_2014_11_a8,
author = {I. V. Sabodakh},
title = {On periodic groups saturated with a finite set of groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {321--326},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a8/}
}
I. V. Sabodakh. On periodic groups saturated with a finite set of groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 321-326. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a8/