Spectrum and resolvent of a block operator matrix
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 334-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the block operator matrix $H$ associated with the system of at most three quantum particles on a $\mathrm{d}$-dimensional lattice is considered. Spectrum of this operator is studied in detail. In particular, it is shown that the operator $H$ has at most four simple eigenvalues lying outside of the essential spectrum. Moreover, the resolvent of $H$ is founded.
Keywords: Block operator matrix, Fock space, annihilation and creation operators, generalized Friedrichs model, Fredholm's determinant, essential and discrete spectrum, resolvent.
@article{SEMR_2014_11_a77,
     author = {T. H. Rasulov and I. O. Umarova},
     title = {Spectrum and resolvent of a block operator matrix},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {334--344},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a77/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - I. O. Umarova
TI  - Spectrum and resolvent of a block operator matrix
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 334
EP  - 344
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a77/
LA  - ru
ID  - SEMR_2014_11_a77
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A I. O. Umarova
%T Spectrum and resolvent of a block operator matrix
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 334-344
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a77/
%G ru
%F SEMR_2014_11_a77
T. H. Rasulov; I. O. Umarova. Spectrum and resolvent of a block operator matrix. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 334-344. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a77/

[1] A. I. Mogilner, “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results”, Advances in Soviet Mathematics, 5 (1991), 139–194 | MR | Zbl

[2] K. O. Fridrikhs, Vozmuscheniya spektra operatorov v gilbertovom prostranstve, Mir, M., 1972

[3] V. A. Malyshev, R. A. Minlos, Linear infinite-particle operators, Translations of Mathematical Monographs, 143, AMS, Providence, Rhode Island, U.S.A., 1995 | MR | Zbl

[4] A. E. Lifschitz, Magnetohydrodynamic and spectral theory, Developments in Electromagnetic Theory and Applications, 4, Kluwer Academic Publishers Group, Dordrecht, 1989 | MR | Zbl

[5] B. Thaller, The Dirac equation, Texts and Monographs in Physics, Springer, Berlin, 1992 | MR

[6] S. Albeverio, S. N. Lakaev, T. H. Rasulov, “On the Spectrum of an Hamiltonian in Fock Space. Discrete Spectrum Asymptotics”, Journal of Statistical Physics, 127:2 (2007), 191–220 | DOI | MR | Zbl

[7] S. Albeverio, S. N. Lakaev, T. H. Rasulov, “The Efimov Effect for a Model Operator Associated with the Hamiltonian of non Conserved Number of Particles”, Methods of Functional Analysis and Topology, 13:1 (2007), 1–16 | MR | Zbl

[8] S. N. Lakaev, T. Kh. Rasulov, “Ob effekte Efimova v modeli teorii vozmuschenii suschestvennogo spektra”, Funktsionalnyi analiz i ego prilozheniya, 37:1 (2003), 81–84 | DOI | MR | Zbl

[9] S. N. Lakaev, T. Kh. Rasulov, “Model v teorii vozmuschenii suschestvennogo spektra mnogochastichnykh operatorov”, Matematicheskie zametki, 73:4 (2003), 556–564 | DOI | MR | Zbl

[10] R. A. Minlos, H. Spohn, “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, American Mathematical Society Translations-Series 2, 177, 1996, 159–193 | MR | Zbl

[11] Yu. V. Zhukov, R. A. Minlos, “Spektr i rasseyanie v modeli “spin-bozon” s ne bolee chem tremya fotonami”, Teoreticheskaya i matematicheskaya fizika, 103:1 (1995), 63–81 | MR | Zbl

[12] S. N. Lakaev, M. E. Muminov, “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shredingera na reshetke”, Teoreticheskaya i matematicheskaya fizika, 135:3 (2003), 478–503 | DOI | MR | Zbl

[13] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger Operators on Lattices. The Efimov Effect and Discrete Spectrum Asymptotics”, Annales Henri Poincaré, 5 (2004), 743–772 | DOI | MR | Zbl