Mots-clés : quasi-elliptic polinomial
@article{SEMR_2014_11_a76,
author = {E. V. Zubchenkova},
title = {On the integral criteria for a convergence of multidimensional {Dirichlet} series},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {76--86},
year = {2014},
volume = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a76/}
}
E. V. Zubchenkova. On the integral criteria for a convergence of multidimensional Dirichlet series. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 76-86. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a76/
[1] H. Mellin, “Die Dirichlet'schen Reihen, die zahlentheoretischen Funktionen und die unendlichen Produkte von endlichem Geschlecht”, Acta Math., 28 (1904), 37–64 | DOI | MR | Zbl
[2] B. Lichtin, “The asymptotics of a lattice point problem associated to a finite number of polynomials, I”, Duke Math. J., 63:1 (1991), 139–192 | DOI | MR | Zbl
[3] B. Lichtin, “The asymptotics of a lattice point problem associated to a finite number of polynomials, II”, Duke Math. J., 77:3 (1995), 699–751 | DOI | MR | Zbl
[4] T. O. Ermolaeva, A. K. Tsikh, “Integrirovanie ratsionalnykh funktsii po $\mathbb{R}^n$ s pomoschyu toricheskikh kompaktifikatsii i mnogomernykh vychetov”, Matem. sbornik, 187:9 (1996), 45–64 | DOI | MR | Zbl
[5] E. V. Zubchenkova, “Integralnyi priznak skhodimosti nekotorykh kratnykh ryadov”, Journal of Siberian Federal University. Mathematics, 4:3 (2011), 344–349
[6] A. K. Tsikh, “Usloviya absolyutnoi skhodimosti ryada iz koeffitsientov Teilora meromorfnykh funktsii dvukh peremennykh”, Matem. sbornik, 182:11 (1991), 1588–1622 | MR
[7] A. G. Khovanskii, “Mnogogranniki Nyutona (razreshenie osobennostei)”, Itogi nauki i tekhniki. Sovr. probl. matem., 22, 1983, 207–239 | MR
[8] C. Berkesch, J. Forsgard, M. Passare, Euler–Mellin integrals and A-hypergeometric functions, 1 Feb. 2013, arXiv: 1103.6273v2 [math.CV]