Asymptotic and numerical analysis of parametric resonance in a nonlinear system of two oscillators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 675-694.

Voir la notice de l'article provenant de la source Math-Net.Ru

A parametric resonance in a nonlinear system of ordinary differential equations, which is a mathemetical model of a water–oil gas containing layer, is considered. The Krylov–Bolgoliubov–Mitropolsky averaging method is applied to investigate the instability of zero solution of the system and deduce averaged equations for time evolution of the amplitude of oscillations in the cases of main and combinational resonances. The original and averaged equations are also integrated numerically with a high-order strong stability preserving Runge–Kutta scheme. By comparing the numerical solutions it is shown that the averaged equations enable us to predict correctly the maximum amplitude of oscillations and the time moment when it is achieved. The dependence of resonance characteritics on the small parameter is also studied.
Keywords: instability in nonlinear system of two oscillators, main and combinational parametric resonances, asymptotic and numerical analysis of resonance.
@article{SEMR_2014_11_a72,
     author = {N. A. Lyulko and N. A. Kudryavtseva and A. N. Kudryavtsev},
     title = {Asymptotic and numerical analysis of parametric resonance in a nonlinear system of two oscillators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {675--694},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a72/}
}
TY  - JOUR
AU  - N. A. Lyulko
AU  - N. A. Kudryavtseva
AU  - A. N. Kudryavtsev
TI  - Asymptotic and numerical analysis of parametric resonance in a nonlinear system of two oscillators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 675
EP  - 694
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a72/
LA  - ru
ID  - SEMR_2014_11_a72
ER  - 
%0 Journal Article
%A N. A. Lyulko
%A N. A. Kudryavtseva
%A A. N. Kudryavtsev
%T Asymptotic and numerical analysis of parametric resonance in a nonlinear system of two oscillators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 675-694
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a72/
%G ru
%F SEMR_2014_11_a72
N. A. Lyulko; N. A. Kudryavtseva; A. N. Kudryavtsev. Asymptotic and numerical analysis of parametric resonance in a nonlinear system of two oscillators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 675-694. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a72/

[1] M. V. Kurlenya, S. V. Serdyukov, “Intensifikatsiya dobychi nefti pri nizkochastotnom vibroseismicheskom vozdeistvii”, Gornyi informatsionno-analiticheskii byulleten, 2004, no. 5, 29–34

[2] V. N. Dorovsky, S. V. Dorovsky, “Hydrodynamic model of water-oil layered systems”, Math. Comput. Mod., 35 (2002), 751–757 | DOI | Zbl

[3] V. N. Dorovsky, V. S. Belonosov, A. S. Belonosov, “Numerical investigation of parametric resonance in water-oil structures containing gas”, Math. Comput. Mod., 36 (2002), 203–209 | DOI | MR | Zbl

[4] V. S. Belonosov, V. N. Dorovskii, A. S. Belonosov, S. V. Dorovskii, “Gidrodinamika gazosoderzhaschikh sloistykh sistem”, Uspekhi mekhaniki, 2005, no. 2, 37–70 | MR

[5] N. A. Lyulko, Osnovnoi i kombinatsionnyi rezonansy v nelineinoi sisteme dvukh ostsillyatorov, Preprint No 281, IM SORAN, 2012, 33 pp.

[6] Yu. N. Vibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equation, Lecture Notes in Mathematics, 702, Springer, Berlin et al., 1979 | MR

[7] P. S. Landa, Nelineinye kolebaniya i volny, Knizhnyi dom «Librokom», M., 2010

[8] A. D. Morozov, Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kosmicheskikh issledovanii, M.–Izhevsk, 2005

[9] G. E. O. Dzhakalya, Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979 | MR

[10] V. A. Yakubovich, V. M. Starzhinskii, Parametricheskii rezonans v lineinykh sistemakh, Nauka, M., 1987 | MR

[11] V. N. Fomin, Matematicheskaya teoriya parametricheskogo rezonansa v lineinykh raspredelennykh sistemakh, Izd-vo LGU, L., 1972 | MR

[12] V. V. Kozlov, Simmetriya, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1995 | MR | Zbl

[13] D. V. Treschev, Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, Fazis, M., 1998 | MR

[14] O. V. Kholostova, “O periodicheskikh dvizheniyakh neavtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri parametricheskom rezonanse osnovnogo tipa”, PMM, 66:4 (2002), 539–551 | MR | Zbl

[15] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku: Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR

[16] N. M. Krylov, N. N. Bogolyubov, Vvedenie v nelineinuyu mekhaniku, Izd-vo AN USSR, Kiev, 1937 | MR

[17] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1955 | MR

[18] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953 | MR | Zbl

[19] V. I. Arnold, V. I. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy-3, Itogi nauki i tekhniki (VINITI). Sovremennye problemy matematiki. Fundamentalnye napravleniya, 3, 1985, 5–290 | MR

[20] V. S. Belonosov, “Spektralnye svoistva obobschennykh funktsii i asimptoticheskie metody teorii vozmuschenii”, Matem. sb., 203:3 (2012), 3–22 | DOI | MR | Zbl

[21] C. B. Macdonald, Constructing High-Order Runge–Kutta Methods with Embedded Strong-Stability Preserving Pairs, MSc Thesis, Simon Fraser Univ., 2003

[22] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong Stability-Preserving High-Order Time Discretization Methods”, SIAM Review, 43 (2001), 89–112 | DOI | MR | Zbl