Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a72, author = {N. A. Lyulko and N. A. Kudryavtseva and A. N. Kudryavtsev}, title = {Asymptotic and numerical analysis of parametric resonance in a nonlinear system of two oscillators}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {675--694}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a72/} }
TY - JOUR AU - N. A. Lyulko AU - N. A. Kudryavtseva AU - A. N. Kudryavtsev TI - Asymptotic and numerical analysis of parametric resonance in a nonlinear system of two oscillators JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 675 EP - 694 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a72/ LA - ru ID - SEMR_2014_11_a72 ER -
%0 Journal Article %A N. A. Lyulko %A N. A. Kudryavtseva %A A. N. Kudryavtsev %T Asymptotic and numerical analysis of parametric resonance in a nonlinear system of two oscillators %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 675-694 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a72/ %G ru %F SEMR_2014_11_a72
N. A. Lyulko; N. A. Kudryavtseva; A. N. Kudryavtsev. Asymptotic and numerical analysis of parametric resonance in a nonlinear system of two oscillators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 675-694. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a72/
[1] M. V. Kurlenya, S. V. Serdyukov, “Intensifikatsiya dobychi nefti pri nizkochastotnom vibroseismicheskom vozdeistvii”, Gornyi informatsionno-analiticheskii byulleten, 2004, no. 5, 29–34
[2] V. N. Dorovsky, S. V. Dorovsky, “Hydrodynamic model of water-oil layered systems”, Math. Comput. Mod., 35 (2002), 751–757 | DOI | Zbl
[3] V. N. Dorovsky, V. S. Belonosov, A. S. Belonosov, “Numerical investigation of parametric resonance in water-oil structures containing gas”, Math. Comput. Mod., 36 (2002), 203–209 | DOI | MR | Zbl
[4] V. S. Belonosov, V. N. Dorovskii, A. S. Belonosov, S. V. Dorovskii, “Gidrodinamika gazosoderzhaschikh sloistykh sistem”, Uspekhi mekhaniki, 2005, no. 2, 37–70 | MR
[5] N. A. Lyulko, Osnovnoi i kombinatsionnyi rezonansy v nelineinoi sisteme dvukh ostsillyatorov, Preprint No 281, IM SORAN, 2012, 33 pp.
[6] Yu. N. Vibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equation, Lecture Notes in Mathematics, 702, Springer, Berlin et al., 1979 | MR
[7] P. S. Landa, Nelineinye kolebaniya i volny, Knizhnyi dom «Librokom», M., 2010
[8] A. D. Morozov, Rezonansy, tsikly i khaos v kvazikonservativnykh sistemakh, NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kosmicheskikh issledovanii, M.–Izhevsk, 2005
[9] G. E. O. Dzhakalya, Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979 | MR
[10] V. A. Yakubovich, V. M. Starzhinskii, Parametricheskii rezonans v lineinykh sistemakh, Nauka, M., 1987 | MR
[11] V. N. Fomin, Matematicheskaya teoriya parametricheskogo rezonansa v lineinykh raspredelennykh sistemakh, Izd-vo LGU, L., 1972 | MR
[12] V. V. Kozlov, Simmetriya, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udmurtskogo gos. un-ta, Izhevsk, 1995 | MR | Zbl
[13] D. V. Treschev, Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, Fazis, M., 1998 | MR
[14] O. V. Kholostova, “O periodicheskikh dvizheniyakh neavtonomnoi gamiltonovoi sistemy s dvumya stepenyami svobody pri parametricheskom rezonanse osnovnogo tipa”, PMM, 66:4 (2002), 539–551 | MR | Zbl
[15] G. M. Zaslavskii, R. Z. Sagdeev, Vvedenie v nelineinuyu fiziku: Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR
[16] N. M. Krylov, N. N. Bogolyubov, Vvedenie v nelineinuyu mekhaniku, Izd-vo AN USSR, Kiev, 1937 | MR
[17] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1955 | MR
[18] B. M. Levitan, Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953 | MR | Zbl
[19] V. I. Arnold, V. I. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy-3, Itogi nauki i tekhniki (VINITI). Sovremennye problemy matematiki. Fundamentalnye napravleniya, 3, 1985, 5–290 | MR
[20] V. S. Belonosov, “Spektralnye svoistva obobschennykh funktsii i asimptoticheskie metody teorii vozmuschenii”, Matem. sb., 203:3 (2012), 3–22 | DOI | MR | Zbl
[21] C. B. Macdonald, Constructing High-Order Runge–Kutta Methods with Embedded Strong-Stability Preserving Pairs, MSc Thesis, Simon Fraser Univ., 2003
[22] S. Gottlieb, C.-W. Shu, E. Tadmor, “Strong Stability-Preserving High-Order Time Discretization Methods”, SIAM Review, 43 (2001), 89–112 | DOI | MR | Zbl