Application of Chebyshev series for the integration of ordinary differential equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 517-531.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical analytic method is proposed for solving the Cauchy problem for normal systems of ordinary differential equations. This method is based on the approximation of the solution and its derivative by partial sums of shifted Chebyshev series. The coefficients of the series are determined by with the aid of an iterative process using Markov's quadrature formulas. The method yields an analytical representation of a solution and can be used to solve ordinary differential equations with a higher accuracy and with a larger discretization step compared to the classical methods, such as Runge–Kutta, Adams, and Gear methods.
Keywords: ordinary differential equations, numerical methods, shifted Chebyshev series
Mots-clés : Markov's quadrature formulas.
@article{SEMR_2014_11_a70,
     author = {O. B. Arushanyan and N. I. Volchenskova and S. F. Zaletkin},
     title = {Application of {Chebyshev} series for the integration of ordinary differential equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {517--531},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a70/}
}
TY  - JOUR
AU  - O. B. Arushanyan
AU  - N. I. Volchenskova
AU  - S. F. Zaletkin
TI  - Application of Chebyshev series for the integration of ordinary differential equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 517
EP  - 531
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a70/
LA  - ru
ID  - SEMR_2014_11_a70
ER  - 
%0 Journal Article
%A O. B. Arushanyan
%A N. I. Volchenskova
%A S. F. Zaletkin
%T Application of Chebyshev series for the integration of ordinary differential equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 517-531
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a70/
%G ru
%F SEMR_2014_11_a70
O. B. Arushanyan; N. I. Volchenskova; S. F. Zaletkin. Application of Chebyshev series for the integration of ordinary differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 517-531. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a70/

[1] O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem ryadov Chebysheva”, Sibirskie elektronnye matematicheskie izvestiya, 7 (2010), 122–131 | MR

[2] O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “O vychislenii koeffitsientov ryadov Chebysheva dlya reshenii obyknovennykh differentsialnykh uravnenii”, Sibirskie elektronnye matematicheskie izvestiya, 8 (2011), 273–283 | MR

[3] S. Pashkovskii, Vychislitelnye primeneniya mnogochlenov i ryadov Chebysheva, Nauka, M., 1983 | MR

[4] K. I. Babenko, Osnovy chislennogo analiza, Nauka, M., 1986 | MR

[5] I. P. Mysovskikh, Lektsii po metodam vychislenii, Izd-vo S.-Peterburg. un-ta, SPb., 1998

[6] V. P. Ilin, Yu. I. Kuznetsov, Algebraicheskie osnovy chislennogo analiza, Nauka, Novosibirsk, 1986 | MR

[7] O. B. Arushanyan, S. F. Zaletkin, “Application of Markov's quadrature in orthogonal expansions”, Moscow University Mathematics Bulletin, 64 (2009), 244–248 | DOI | MR

[8] S. F. Zaletkin, “Formula chislennogo integrirovaniya Markova s dvumya fiksirovannymi uzlami i ee primenenie v ortogonalnykh razlozheniyakh”, Vychislitelnye metody i programmirovanie, 6 (2005), 141–157

[9] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, v. 2, Fizmatgiz, M., 1962 | MR

[10] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Binom, M., 2007

[11] Dzh. Kholl, Dzh. Uatt (red.), Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979

[12] C. W. Gear, Numerical initial value problems in ordinary differential equations, Prentice Hall, Englewood Cliffs, 1971 | MR | Zbl

[13] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[14] O. B. Arushanyan, S. F. Zaletkin, Chislennoe reshenie obyknovennykh differentsialnykh uravnenii na Fortrane, Izd-vo Mosk. un-ta, M., 1990 | MR | Zbl

[15] O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Application of orthogonal expansions for approximate integration of ordinary differential equations”, Moscow University Mathematics Bulletin, 65 (2010), 172–175 | DOI | MR

[16] O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Calculation of expansion coefficients of series in Chebyshev polinomials for a solution to a Cauchy problem”, Moscow University Mathematics Bulletin, 67 (2012), 211–216 | DOI | MR | Zbl