On isomorphism between distance-regular graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 311-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1], two new constructions of antipodal distance-regular graphs related to the group $PSL_2(q)$ have been proposed. The author of [1] remained the question whether these graphs were isomorphic to some known ones unsolved. In this work, we show that distance-regular graphs mentioned above are isomorphic to the Mathon graphs with appropriate values of parameters.
Keywords: distance-regular graph
Mots-clés : graph isomorphism, group action on a graph.
@article{SEMR_2014_11_a7,
     author = {S. V. Goryainov},
     title = {On isomorphism between distance-regular graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {311--320},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a7/}
}
TY  - JOUR
AU  - S. V. Goryainov
TI  - On isomorphism between distance-regular graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 311
EP  - 320
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a7/
LA  - en
ID  - SEMR_2014_11_a7
ER  - 
%0 Journal Article
%A S. V. Goryainov
%T On isomorphism between distance-regular graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 311-320
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a7/
%G en
%F SEMR_2014_11_a7
S. V. Goryainov. On isomorphism between distance-regular graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 311-320. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a7/

[1] I. T. Mukhametyanov, “On distance-regular graphs on the set of nonidentity $p$-elements of the group $L_2(p^n)$”, Tr. Inst. Mat. Mekh. UrO RAN, 18, no. 3, 2012, 164–178

[2] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin, 1989, 386 pp. | MR | Zbl

[3] V. A. Belonogov, Representations and characters in finite group theory, Ural Branch of Academy of Science, USSR, Sverdlovsk, 1990, 380 pp. | MR