Cubature formulas on a sphere invariant under the tetrahedral group with inversion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 372-379.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unified algorithm of searching for the best (in a sense) cubature formulas on a sphere that are invariant under the tetrahedral group of rotations with inversion is described. This algorithm is applied to find parameters of all the best cubature formulas of this symmetry group up to the 41st order of accuracy.
Keywords: numerical integration, tetrahedral group of rotations.
Mots-clés : invariant cubature formulas, invariant polynomials
@article{SEMR_2014_11_a68,
     author = {A. S. Popov},
     title = {Cubature formulas on a sphere invariant under the tetrahedral group with inversion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {372--379},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a68/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - Cubature formulas on a sphere invariant under the tetrahedral group with inversion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 372
EP  - 379
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a68/
LA  - ru
ID  - SEMR_2014_11_a68
ER  - 
%0 Journal Article
%A A. S. Popov
%T Cubature formulas on a sphere invariant under the tetrahedral group with inversion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 372-379
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a68/
%G ru
%F SEMR_2014_11_a68
A. S. Popov. Cubature formulas on a sphere invariant under the tetrahedral group with inversion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 372-379. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a68/

[1] S. L. Sobolev, “O kubaturnykh formulakh na sfere, invariantnykh pri preobrazovanii konechnykh grupp vraschenii”, Dokl. AN SSSR, 146:2 (1962), 310–313 | MR | Zbl

[2] S. L. Sobolev, “O formulakh mekhanicheskikh kubatur na poverkhnosti sfery”, Sib. mat. zhurn., 3:5 (1962), 769–796 | MR | Zbl

[3] A. D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl

[4] V. I. Lebedev, “Znacheniya uzlov i vesov kvadraturnykh formul tipa Gaussa-Markova dlya sfery ot 9-go do 17-go poryadka tochnosti, invariantnykh otnositelno gruppy oktaedra s inversiei”, Zhurn. vychisl. matem. i matem. fiz., 15:1 (1975), 48–54 | Zbl

[5] V. I. Lebedev, “O kvadraturakh na sfere”, Zhurn. vychisl. matem. i matem. fiz., 16:2 (1976), 293–306 | MR | Zbl

[6] V. I. Lebedev, “Kvadraturnye formuly dlya sfery 25–29-go poryadka tochnosti”, Sib. mat. zhurn., 18:1 (1977), 132–142 | MR | Zbl

[7] V. I. Lebedev, D. N. Laikov, “Kvadraturnaya formula dlya sfery 131-go algebraicheskogo poryadka tochnosti”, Dokl. RAH, 366:6 (1999), 741–745 | MR | Zbl

[8] S. I. Konyaev, “Kvadratury tipa Gaussa dlya sfery, invariantnye otnositelno gruppy ikosaedra s inversiei”, Mat. zametki, 25:4 (1979), 629–634 | MR | Zbl

[9] S. I. Konyaev, “Formuly chislennogo integrirovaniya na sfere”, Teoremy vlozheniya i ikh prilozheniya, Trudy seminara akad. S. L. Soboleva, 1, Novosibirsk, 1982, 75–82 | MR | Zbl

[10] S. I. Konyaev, “On invariant quadrature formulae for a sphere”, Russ. J. Numer. Anal. Math. Modelling, 10:1 (1995), 41–47 | DOI | MR | Zbl

[11] I. P. Mysovskikh, Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl

[12] A. S. Popov, “Kubaturnye formuly dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zhurn. vychisl. matem. i matem. fiz., 35:3 (1995), 459–466 | MR | Zbl

[13] A. S. Popov, “Kubaturnye formuly vysokikh poryadkov tochnosti dlya sfery, invariantnye otnositelno gruppy tetraedra”, Zhurn. vychisl. matem. i matem. fiz., 36:4 (1996), 5–9 | MR | Zbl

[14] A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy vraschenii oktaedra”, Zhurn. vychisl. matem. i matem. fiz., 38:1 (1998), 34–41 | MR | Zbl

[15] A. S. Popov, “Poisk nailuchshikh kubaturnykh formul dlya sfery, invariantnykh otnositelno gruppy vraschenii oktaedra”, Sib. zhurn. vychisl. matem., 5:4 (2002), 367–372 | MR

[16] A. S. Popov, “Nailuchshie kubaturnye formuly dlya sfery, invariantnye otnositelno gruppy vraschenii tetraedra s inversiei”, Mezhdunar. konf. po vychisl. matematike (Novosibirsk, 2004), 128–131

[17] A. S. Popov, “Poisk nailuchshikh kubaturnykh formul dlya sfery, invariantnykh otnositelno gruppy vraschenii oktaedra s inversiei”, Sib. zhurn. vychisl. matem., 8:2 (2005), 143–148 | Zbl

[18] A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy vraschenii ikosaedra”, Sib. zhurn. vychisl. matem., 11:4 (2008), 433–440 | Zbl

[19] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, M., 1989 | MR

[20] V. G. Boltyanskii, N. Ya. Vilenkin, Simmetriya v algebre, Nauka, M., 1967 | Zbl

[21] V. A. Ditkin, “O nekotorykh priblizhennykh formulakh dlya vychisleniya trekhkratnykh integralov”, Dokl. AN SSSR, 62:4 (1948), 445–447 | MR | Zbl

[22] J. Albrecht, L. Collatz, “Zur numerischen Auswertung mehrdimensionaler Integrale”, Z. angew. Math. Mech., 38:1/2 (1958), 1–15 | DOI | MR | Zbl

[23] V. A. Ditkin, L. A. Lyusternik, “Ob odnom prieme prakticheskogo garmonicheskogo analiza na sfere”, Vychisl. matematika i vychisl. tekhnika, 1, Mashgiz, M., 1953, 3–13 | MR

[24] Dzh. Dennis (ml.), R. Shnabel, Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988 | MR