Cubature formulas on a sphere invariant under the tetrahedral group with inversion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 372-379
Voir la notice de l'article provenant de la source Math-Net.Ru
The unified algorithm of searching for the best (in a sense) cubature formulas on a sphere that are invariant under the tetrahedral group of rotations with inversion is described. This algorithm is applied to find parameters of all the best cubature formulas of this symmetry group up to the 41st order of accuracy.
Keywords:
numerical integration, tetrahedral group of rotations.
Mots-clés : invariant cubature formulas, invariant polynomials
Mots-clés : invariant cubature formulas, invariant polynomials
@article{SEMR_2014_11_a68,
author = {A. S. Popov},
title = {Cubature formulas on a sphere invariant under the tetrahedral group with inversion},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {372--379},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a68/}
}
TY - JOUR AU - A. S. Popov TI - Cubature formulas on a sphere invariant under the tetrahedral group with inversion JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 372 EP - 379 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a68/ LA - ru ID - SEMR_2014_11_a68 ER -
A. S. Popov. Cubature formulas on a sphere invariant under the tetrahedral group with inversion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 372-379. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a68/