Simpson rule and its modifications for a function with a boundary layer component
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 258-267
Voir la notice de l'article provenant de la source Math-Net.Ru
Quadrature formulas for a function with a boundary layer component are investigated. An application of Simpson rule on an uniform mesh for the integration of such function leads to significant errors. Two approaches to increase the accuracy are investigated: the fitting of Simpson rule to a boundary layer component and using Simpson rule on Shishkin mesh. Results of numerical experiments are discussed.
Keywords:
definite integral, boundary layer component, Simpson rule, Shishkin mesh
Mots-clés : singular perturbation, modification, error estimation.
Mots-clés : singular perturbation, modification, error estimation.
@article{SEMR_2014_11_a67,
author = {A. I. Zadorin and N. A. Zadorin},
title = {Simpson rule and its modifications for a function with a boundary layer component},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {258--267},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/}
}
TY - JOUR AU - A. I. Zadorin AU - N. A. Zadorin TI - Simpson rule and its modifications for a function with a boundary layer component JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 258 EP - 267 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/ LA - ru ID - SEMR_2014_11_a67 ER -
%0 Journal Article %A A. I. Zadorin %A N. A. Zadorin %T Simpson rule and its modifications for a function with a boundary layer component %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 258-267 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/ %G ru %F SEMR_2014_11_a67
A. I. Zadorin; N. A. Zadorin. Simpson rule and its modifications for a function with a boundary layer component. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 258-267. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/