Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a67, author = {A. I. Zadorin and N. A. Zadorin}, title = {Simpson rule and its modifications for a function with a boundary layer component}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {258--267}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/} }
TY - JOUR AU - A. I. Zadorin AU - N. A. Zadorin TI - Simpson rule and its modifications for a function with a boundary layer component JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 258 EP - 267 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/ LA - ru ID - SEMR_2014_11_a67 ER -
%0 Journal Article %A A. I. Zadorin %A N. A. Zadorin %T Simpson rule and its modifications for a function with a boundary layer component %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 258-267 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/ %G ru %F SEMR_2014_11_a67
A. I. Zadorin; N. A. Zadorin. Simpson rule and its modifications for a function with a boundary layer component. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 258-267. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/
[1] A. I. Zadorin, N. A. Zadorin, “Kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1952–1962 | MR | Zbl
[2] A. I. Zadorin, N. A. Zadorin, “Analog formuly Nyutona–Kotesa s chetyrmya uzlami dlya funktsii s pogransloinoi sostavlyayuschei”, Sib. zhurn. vychisl. matematiki, 16:4 (2013), 313–323 | Zbl
[3] A. Zadorin, N. Zadorin, “Quadrature Formula with Five Nodes for Functions with a Boundary Layer Component”, Lect. Notes in Computer Science., 8236, Springer-Verlag, Berlin, 2013, 540–546 | DOI | Zbl
[4] A. I. Zadorin, N. A. Zadorin, “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sibirskie elektronnye matematicheskie izvestiya, 9 (2012), 445–455 | MR
[5] G. I. Shishkin, Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[6] J. J. H. Miller, E. O’Riordan, G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific Publishing, Singapore, 2012 | MR
[7] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987 | MR | Zbl
[8] R. B. Kellogg, A. Tsan, “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl
[9] T. Lins, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Lecture Notes in Mathematics, 1985, Springer, Berlin, 2010 | DOI | MR | Zbl
[10] S. M. Nikolskii, Kvadraturnye formuly, Nauka, M., 1974 | MR