Simpson rule and its modifications for a function with a boundary layer component
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 258-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quadrature formulas for a function with a boundary layer component are investigated. An application of Simpson rule on an uniform mesh for the integration of such function leads to significant errors. Two approaches to increase the accuracy are investigated: the fitting of Simpson rule to a boundary layer component and using Simpson rule on Shishkin mesh. Results of numerical experiments are discussed.
Keywords: definite integral, boundary layer component, Simpson rule, Shishkin mesh
Mots-clés : singular perturbation, modification, error estimation.
@article{SEMR_2014_11_a67,
     author = {A. I. Zadorin and N. A. Zadorin},
     title = {Simpson rule and its modifications for a function with a boundary layer component},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {258--267},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - N. A. Zadorin
TI  - Simpson rule and its modifications for a function with a boundary layer component
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 258
EP  - 267
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/
LA  - ru
ID  - SEMR_2014_11_a67
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A N. A. Zadorin
%T Simpson rule and its modifications for a function with a boundary layer component
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 258-267
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/
%G ru
%F SEMR_2014_11_a67
A. I. Zadorin; N. A. Zadorin. Simpson rule and its modifications for a function with a boundary layer component. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 258-267. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a67/

[1] A. I. Zadorin, N. A. Zadorin, “Kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1952–1962 | MR | Zbl

[2] A. I. Zadorin, N. A. Zadorin, “Analog formuly Nyutona–Kotesa s chetyrmya uzlami dlya funktsii s pogransloinoi sostavlyayuschei”, Sib. zhurn. vychisl. matematiki, 16:4 (2013), 313–323 | Zbl

[3] A. Zadorin, N. Zadorin, “Quadrature Formula with Five Nodes for Functions with a Boundary Layer Component”, Lect. Notes in Computer Science., 8236, Springer-Verlag, Berlin, 2013, 540–546 | DOI | Zbl

[4] A. I. Zadorin, N. A. Zadorin, “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sibirskie elektronnye matematicheskie izvestiya, 9 (2012), 445–455 | MR

[5] G. I. Shishkin, Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[6] J. J. H. Miller, E. O’Riordan, G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific Publishing, Singapore, 2012 | MR

[7] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987 | MR | Zbl

[8] R. B. Kellogg, A. Tsan, “Analysis of some difference approximations for a singular perturbation problems without turning points”, Math. Comput., 32 (1978), 1025–1039 | DOI | MR | Zbl

[9] T. Lins, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Lecture Notes in Mathematics, 1985, Springer, Berlin, 2010 | DOI | MR | Zbl

[10] S. M. Nikolskii, Kvadraturnye formuly, Nauka, M., 1974 | MR