The first regularized trace for the two-fold differentiation operator in~a~punctured segment
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 626-633.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are found the formulas of the first regularized trace (of the type of abstract Gel'fand–Levitan formula) of the two-fold differentiation operator in a punctured segment. Proof of the main result is given by the method of contour integration with corrections of the analytic perturbation theory. Some well-known trace formulas are generalized.
Keywords: Differential operator, First Regularized Trace, Eigenvalue, Characteristic function.
@article{SEMR_2014_11_a63,
     author = {M. E. Akhymbek and D. B. Nurakhmetov},
     title = {The first regularized trace for the two-fold differentiation operator in~a~punctured segment},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {626--633},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a63/}
}
TY  - JOUR
AU  - M. E. Akhymbek
AU  - D. B. Nurakhmetov
TI  - The first regularized trace for the two-fold differentiation operator in~a~punctured segment
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 626
EP  - 633
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a63/
LA  - ru
ID  - SEMR_2014_11_a63
ER  - 
%0 Journal Article
%A M. E. Akhymbek
%A D. B. Nurakhmetov
%T The first regularized trace for the two-fold differentiation operator in~a~punctured segment
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 626-633
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a63/
%G ru
%F SEMR_2014_11_a63
M. E. Akhymbek; D. B. Nurakhmetov. The first regularized trace for the two-fold differentiation operator in~a~punctured segment. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 626-633. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a63/

[1] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii svyazannoi s kvantovoi statistikoi”, UMN, 7:1(47) (1952), 171–180 | MR | Zbl

[2] I. M. Gelfand, B. M. Levitan, “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | MR | Zbl

[3] L. A. Dikii, “Ob odnoi formule Gelfanda–Levitana”, UMN, 8:2 (1953), 119–123 | MR

[4] B. M. Levitan, “Vychislenie regulyarizovannogo sleda dlya operatora Shturma–Liuvillya”, UMN, 19:1 (1964), 161–165 | MR | Zbl

[5] V. B. Lidskii, V. A. Sadovnichii, “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii”, Dokl. AN SSSR, 176:2 (1967), 259–262 | MR | Zbl

[6] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[7] V. A. Vinokurov, V. A. Sadovnichii, “Sobstvennoe znachenie i sled operatora Shturma–Liuvillya kak differentsiruemye funktsii summiruemogo potentsiala”, Dokl. RAN, 365:3 (1999), 295–297 | MR | Zbl

[8] A. M. Savchuk, “Regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, UMN, 55:6(336) (2000), 155–156 | DOI | MR | Zbl

[9] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl

[10] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvabel models in quantum mechanics, Springer, New Yourk, 1988 ; Second edition, AMS, 2005 | MR | Zbl

[11] A. M. Savchuk, A. A. Shkalikov, “Formula sleda dlya operatorov Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 69:3 (2001), 427–442 | DOI | MR | Zbl

[12] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “K voprosam rasshireniya i suzheniya operatorov”, Doklady AN SSSR, 271:6 (1983), 1307–1311 | MR

[13] B. E. Kanguzhin, D. B. Nurakhmetov, “Boundary Value Problems for 2nd Order Non-homogeneous Differential Equations with Variable Coefficients”, Journal of Xinjiang University (Natural Science Edition), 28:1 (2011), Sum. 121, 47–56

[14] Kanguzhin B. E., Aniyarov A. A., “Korrektnye zadachi dlya operatora Laplasa v prokolotoi oblasti”, Matem. zametki, 89:6 (2011), 856–867 | DOI | MR | Zbl

[15] Kanguzhin B. E., Nurakhmetov D. B., Tokmagambetov N. E., “Operator Laplasa s $\delta$-podobnymi potentsialami”, Izv. vuzov. Matem., 2014, no. 2, 9–16