Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a63, author = {M. E. Akhymbek and D. B. Nurakhmetov}, title = {The first regularized trace for the two-fold differentiation operator in~a~punctured segment}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {626--633}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a63/} }
TY - JOUR AU - M. E. Akhymbek AU - D. B. Nurakhmetov TI - The first regularized trace for the two-fold differentiation operator in~a~punctured segment JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 626 EP - 633 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a63/ LA - ru ID - SEMR_2014_11_a63 ER -
%0 Journal Article %A M. E. Akhymbek %A D. B. Nurakhmetov %T The first regularized trace for the two-fold differentiation operator in~a~punctured segment %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 626-633 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a63/ %G ru %F SEMR_2014_11_a63
M. E. Akhymbek; D. B. Nurakhmetov. The first regularized trace for the two-fold differentiation operator in~a~punctured segment. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 626-633. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a63/
[1] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii svyazannoi s kvantovoi statistikoi”, UMN, 7:1(47) (1952), 171–180 | MR | Zbl
[2] I. M. Gelfand, B. M. Levitan, “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | MR | Zbl
[3] L. A. Dikii, “Ob odnoi formule Gelfanda–Levitana”, UMN, 8:2 (1953), 119–123 | MR
[4] B. M. Levitan, “Vychislenie regulyarizovannogo sleda dlya operatora Shturma–Liuvillya”, UMN, 19:1 (1964), 161–165 | MR | Zbl
[5] V. B. Lidskii, V. A. Sadovnichii, “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii”, Dokl. AN SSSR, 176:2 (1967), 259–262 | MR | Zbl
[6] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR
[7] V. A. Vinokurov, V. A. Sadovnichii, “Sobstvennoe znachenie i sled operatora Shturma–Liuvillya kak differentsiruemye funktsii summiruemogo potentsiala”, Dokl. RAN, 365:3 (1999), 295–297 | MR | Zbl
[8] A. M. Savchuk, “Regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, UMN, 55:6(336) (2000), 155–156 | DOI | MR | Zbl
[9] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl
[10] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvabel models in quantum mechanics, Springer, New Yourk, 1988 ; Second edition, AMS, 2005 | MR | Zbl
[11] A. M. Savchuk, A. A. Shkalikov, “Formula sleda dlya operatorov Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 69:3 (2001), 427–442 | DOI | MR | Zbl
[12] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “K voprosam rasshireniya i suzheniya operatorov”, Doklady AN SSSR, 271:6 (1983), 1307–1311 | MR
[13] B. E. Kanguzhin, D. B. Nurakhmetov, “Boundary Value Problems for 2nd Order Non-homogeneous Differential Equations with Variable Coefficients”, Journal of Xinjiang University (Natural Science Edition), 28:1 (2011), Sum. 121, 47–56
[14] Kanguzhin B. E., Aniyarov A. A., “Korrektnye zadachi dlya operatora Laplasa v prokolotoi oblasti”, Matem. zametki, 89:6 (2011), 856–867 | DOI | MR | Zbl
[15] Kanguzhin B. E., Nurakhmetov D. B., Tokmagambetov N. E., “Operator Laplasa s $\delta$-podobnymi potentsialami”, Izv. vuzov. Matem., 2014, no. 2, 9–16