Inserted invariant submodels for motion of monatomic gas
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 605-625.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the gas dynamics equations with the state equation of the monatomic polytropic gas. From optimal system of a 14-dimensional Lie algebra admitted by the model we select subalgebras containing projective operator which is specific to this model. The optimal system consists of 73 subalgebras. The graph of all inserted subalgebras was constructed. It submits from 6 fragments. For any 4-dimensional subalgebra a hierarchy of inserted invariant submodels was constructed.
Keywords: gas dynamics equations, graph of inserted subalgebras, invariant submodel.
Mots-clés : optimal system of subalgebras
@article{SEMR_2014_11_a62,
     author = {R. F. Shayakhmetova},
     title = {Inserted invariant submodels for motion of monatomic gas},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {605--625},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a62/}
}
TY  - JOUR
AU  - R. F. Shayakhmetova
TI  - Inserted invariant submodels for motion of monatomic gas
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 605
EP  - 625
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a62/
LA  - ru
ID  - SEMR_2014_11_a62
ER  - 
%0 Journal Article
%A R. F. Shayakhmetova
%T Inserted invariant submodels for motion of monatomic gas
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 605-625
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a62/
%G ru
%F SEMR_2014_11_a62
R. F. Shayakhmetova. Inserted invariant submodels for motion of monatomic gas. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 605-625. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a62/

[1] L. V. Ovsyannikov, “Programma PODMODELI. Gazovaya dinamika”, PMM, 58:4 (1994), 30–55 | MR | Zbl

[2] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[3] A. A. Cherevko, Optimalnaya sistema podalgebr dlya algebry Li operatorov, dopuskaemykh sistemoi uravnenii gazovoi dinamiki s uravneniem sostoyaniya $p=f(S)\,\rho^{5/3}$, Preprint No 4-96, RAN, Sib. otd-nie, In-t gidrodinamiki, Novosibirsk, 1996 | MR

[4] S. V. Khabirov, “Ierarkhiya podmodelei differentsialnykh uravnenii”, SMZh, 54:6 (2013), 1396–1406 | MR | Zbl