Unbounded solutions of the polynomial Cauchy--Riemann systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 494-507
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the behavior of the trajectories of the Cauchy–Riemann polynomial differential systems at infinity. We use our results to construct the phase portraits for some special cases.
Keywords:
singular points at infinity, Poincaré equator, separarices, polynomial first integrals.
@article{SEMR_2014_11_a61,
author = {E. P. Volokitin},
title = {Unbounded solutions of the polynomial {Cauchy--Riemann} systems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {494--507},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/}
}
E. P. Volokitin. Unbounded solutions of the polynomial Cauchy--Riemann systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 494-507. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/