Unbounded solutions of the polynomial Cauchy–Riemann systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 494-507 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the behavior of the trajectories of the Cauchy–Riemann polynomial differential systems at infinity. We use our results to construct the phase portraits for some special cases.
Keywords: singular points at infinity, separarices, polynomial first integrals.
Mots-clés : Poincaré equator
@article{SEMR_2014_11_a61,
     author = {E. P. Volokitin},
     title = {Unbounded solutions of the polynomial {Cauchy{\textendash}Riemann} systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {494--507},
     year = {2014},
     volume = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/}
}
TY  - JOUR
AU  - E. P. Volokitin
TI  - Unbounded solutions of the polynomial Cauchy–Riemann systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 494
EP  - 507
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/
LA  - ru
ID  - SEMR_2014_11_a61
ER  - 
%0 Journal Article
%A E. P. Volokitin
%T Unbounded solutions of the polynomial Cauchy–Riemann systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 494-507
%V 11
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/
%G ru
%F SEMR_2014_11_a61
E. P. Volokitin. Unbounded solutions of the polynomial Cauchy–Riemann systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 494-507. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/

[1] Gregor J., “Dynamické systémy s regulární pravou stranou, I”, Pokroky matematiky, fyziky a astronomie, 3:2 (1958), 153–160 | Zbl

[2] Gavrilov N. I., Metody teorii obyknovennykh differentsialnykh uravnenii, Vysshaya shkola, M., 1962 | MR | Zbl

[3] Lukashevich N. A., “Izokhronnost tsentra nekotorykh sistem differentsialnykh uravnenii”, Differentsialnye uravneniya, 1:5 (1965), 295–302 | MR

[4] Pleshkan I. I., “Novyi sposob issledovaniya na izokhronnost sistemy dvukh differentsialnykh uravnenii”, Differentsialnye uravneniya, 5:6 (1969), 1083–1090 | Zbl

[5] Villarini M., “Regularity propeties of the period function near a centre of planar vector fields”, Nonlinear Analysis, 19:8 (1992), 787–803 | DOI | MR | Zbl

[6] Mardešić P., Rousseau C., Toni B., “Linearization of isochronous centers”, Journal of Differential Equations, 121:1 (1995), 67–108 | DOI | MR | Zbl

[7] Christopher C. J., Devlin J., “Isochronous centers in planar polynomial systems”, SIAM J. Math. Anal., 28:1 (1997), 162–177 | DOI | MR | Zbl

[8] Volokitin E. P., Cheresiz V. M., “Osobye tochki i pervye integraly golomorfnykh dinamicheskikh sistem”, Vestnik NGU. Ser.: Matematika, mekhanika, informatika, 13:2 (2013), 21–37 | Zbl

[9] Volokitin E. P., “Integriruemost po Darbu polinomialnykh kompleksnykh sistem”, Sibirskie elektronnye matematicheskie izvestiya, 10 (2013), 271–284 | MR

[10] Sabatini M., “Characterizing isochronous centres by Lie brackets”, Differential Equations and Dynamical Systems, 5:1 (1997), 91–99 | MR | Zbl

[11] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR | Zbl

[12] Rylov A. I., “Novye spiralnye i sloistye techeniya kak primery sopryazhennykh techenii neszhimaemoi zhidkosti”, Doklady RAN, 457:4 (2014)

[13] Gonzáles Velasco, Enrique A., “Generic propeties of polynomial vector fields at infinity”, Trans. Amer. Math. Soc., 143 (1969), 201–222 | DOI | MR | Zbl

[14] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990 | MR | Zbl

[15] Andronov A. A. i dr., Kachestvennaya teoriya dinamicheskikh sistem na ploskosti, Nauka, M., 1966 | MR | Zbl

[16] Conti R., “Centers of planar polynomial systems: A review”, Le Mathematiche, LIII:II (1998), 207–240 | MR | Zbl