Unbounded solutions of the polynomial Cauchy--Riemann systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 494-507

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of the trajectories of the Cauchy–Riemann polynomial differential systems at infinity. We use our results to construct the phase portraits for some special cases.
Keywords: singular points at infinity, Poincaré equator, separarices, polynomial first integrals.
@article{SEMR_2014_11_a61,
     author = {E. P. Volokitin},
     title = {Unbounded solutions of the polynomial {Cauchy--Riemann} systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {494--507},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/}
}
TY  - JOUR
AU  - E. P. Volokitin
TI  - Unbounded solutions of the polynomial Cauchy--Riemann systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 494
EP  - 507
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/
LA  - ru
ID  - SEMR_2014_11_a61
ER  - 
%0 Journal Article
%A E. P. Volokitin
%T Unbounded solutions of the polynomial Cauchy--Riemann systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 494-507
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/
%G ru
%F SEMR_2014_11_a61
E. P. Volokitin. Unbounded solutions of the polynomial Cauchy--Riemann systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 494-507. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a61/