On linear rigidity of a class of codes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 771-776
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper a notion of linear rigidity of codes is introduced and discussed. We recall several examples of codes those are linearly rigid as well as those are not. Linear rigidity of MDS-codes with minimum distance 2 in the vector space over the prime field is proved.
Keywords:
linear code, linear rigidity of codes, code symmetry, prime field, finite field.
Mots-clés : MDS-code, code automorphism
Mots-clés : MDS-code, code automorphism
@article{SEMR_2014_11_a53,
author = {E. V. Gorkunov and E. V. Sotnikova},
title = {On linear rigidity of a class of codes},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {771--776},
year = {2014},
volume = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a53/}
}
E. V. Gorkunov; E. V. Sotnikova. On linear rigidity of a class of codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 771-776. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a53/
[1] A. A. Markov, “O preobrazovaniyakh, ne rasprostranyayuschikh iskazheniya”, Izbrannye trudy, v. II, Teoriya algorifmov i konstruktivnaya matematika, matematicheskaya logika, informatika i smezhnye voprosy, MTsNMO, M., 2003, 70–93 | MR
[2] F. J. MacWilliams, Combinatorial problems of elementary Abelian groups, Doctoral thesis, Harvard University, Cambridge, 1962 | MR
[3] E. V. Gorkunov, “Gruppa avtomorfizmov $q$-ichnogo koda Khemminga”, Diskretn. analiz i issled. oper., 17:6 (2010), 50–55 | MR | Zbl
[4] F. Dzh. Mak-Vilyams, N. Dzh. A. Sloen, Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979 | Zbl