On generalized 7-dimensional Seifert fibrations over complex projective plane
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 966-974
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss topological properties of certain $7$-dimensional generalized Seifert fibrations, and, in particular, of the Eschenburg spaces with positive sectional curvature. We compute the values of the first fractional Chern class $\kappa$ of the corresponding $S^3/\mathbb{Z}_q$ bundles over $\mathbb{C} P^1$.
Keywords:
homogenous spaces, sectional curvature, Seifert fibrations.
@article{SEMR_2014_11_a45,
author = {N. E. Russkikh},
title = {On generalized 7-dimensional {Seifert} fibrations over complex projective plane},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {966--974},
year = {2014},
volume = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a45/}
}
N. E. Russkikh. On generalized 7-dimensional Seifert fibrations over complex projective plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 966-974. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a45/
[1] J.-Y. Eschenburg, “New examples of manifolds with strictly positive curvature”, Invent. Math., 66 (1982), 469–480 | DOI | MR | Zbl
[2] W. Ziller, Riemannian manifolds with positive sectional curvature, arXiv: 1210.4102
[3] I. A. Taimanov, “O vpolne geodezicheskikh vlozheniyakh $7$-mernykh mnogoobrazii v $13$-mernye mnogoobraziya polozhitelnoi sektsionnoi krivizny”, Matem. sbornik, 187:12 (1996), 121–136 | DOI | MR | Zbl
[4] I. A. Taimanov, “O mnogomernom obobschenii rassloenii Zeiferta”, Trudy MIAN, 2015 (to appear) | DOI
[5] J. DeVito, “The classification of compact simply connected biquotients in dimensions 4 and 5”, Differential Geometry and its Applications, 34 (2014), 128–138 | DOI | MR | Zbl