Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a45, author = {N. E. Russkikh}, title = {On generalized 7-dimensional {Seifert} fibrations over complex projective plane}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {966--974}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a45/} }
TY - JOUR AU - N. E. Russkikh TI - On generalized 7-dimensional Seifert fibrations over complex projective plane JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 966 EP - 974 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a45/ LA - ru ID - SEMR_2014_11_a45 ER -
N. E. Russkikh. On generalized 7-dimensional Seifert fibrations over complex projective plane. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 966-974. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a45/
[1] J.-Y. Eschenburg, “New examples of manifolds with strictly positive curvature”, Invent. Math., 66 (1982), 469–480 | DOI | MR | Zbl
[2] W. Ziller, Riemannian manifolds with positive sectional curvature, arXiv: 1210.4102
[3] I. A. Taimanov, “O vpolne geodezicheskikh vlozheniyakh $7$-mernykh mnogoobrazii v $13$-mernye mnogoobraziya polozhitelnoi sektsionnoi krivizny”, Matem. sbornik, 187:12 (1996), 121–136 | DOI | MR | Zbl
[4] I. A. Taimanov, “O mnogomernom obobschenii rassloenii Zeiferta”, Trudy MIAN, 2015 (to appear) | DOI
[5] J. DeVito, “The classification of compact simply connected biquotients in dimensions 4 and 5”, Differential Geometry and its Applications, 34 (2014), 128–138 | DOI | MR | Zbl