On Willmore Surfaces of Revolution in $\mathbb{R}^3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 887-890.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study Euler–Lagrange equation for the Willmore functional in the case of surfaces of revolution. Explicit solutions are constructed in terms of elliptic functions.
Keywords: Willmore surface
Mots-clés : exact solution.
@article{SEMR_2014_11_a43,
     author = {S. M. Cherosova and E. I. Shamaev},
     title = {On {Willmore} {Surfaces} of {Revolution} in $\mathbb{R}^3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {887--890},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/}
}
TY  - JOUR
AU  - S. M. Cherosova
AU  - E. I. Shamaev
TI  - On Willmore Surfaces of Revolution in $\mathbb{R}^3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 887
EP  - 890
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/
LA  - ru
ID  - SEMR_2014_11_a43
ER  - 
%0 Journal Article
%A S. M. Cherosova
%A E. I. Shamaev
%T On Willmore Surfaces of Revolution in $\mathbb{R}^3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 887-890
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/
%G ru
%F SEMR_2014_11_a43
S. M. Cherosova; E. I. Shamaev. On Willmore Surfaces of Revolution in $\mathbb{R}^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 887-890. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/

[1] Willmore T. J., “Note on embedded surfaces”, An. Şti. Univ. “Al. I. Cuza” Iaşi, Secţ. IaM at., 11B (1965), 493–496 | MR | Zbl

[2] Bergner M., Dall'Acqua A., Fröhlich S., “Willmore surfaces of revolution with two prescribed boundary circles”, J. of Geometric Analysis, 23:1 (2013), 283–302 | DOI | MR | Zbl

[3] Dall'Acqua A., Fröhlich S., Grunau H.-C., Schieweck F., “Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data”, Adv. in Calculus of Variations, 4:1 (2011), 1–81 | DOI | MR | Zbl

[4] Langer J., Singer D. A., “Curves in the hyperbolic plane and mean curvature of tori in 3-space”, Bull. of the London Math. Soc., 16:5 (1984), 531–534 | DOI | MR | Zbl

[5] Abramowitz M., Stegun I. A., Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Courier Dover Publ., New York, 1972 | Zbl