Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a43, author = {S. M. Cherosova and E. I. Shamaev}, title = {On {Willmore} {Surfaces} of {Revolution} in $\mathbb{R}^3$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {887--890}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/} }
S. M. Cherosova; E. I. Shamaev. On Willmore Surfaces of Revolution in $\mathbb{R}^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 887-890. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/
[1] Willmore T. J., “Note on embedded surfaces”, An. Şti. Univ. “Al. I. Cuza” Iaşi, Secţ. IaM at., 11B (1965), 493–496 | MR | Zbl
[2] Bergner M., Dall'Acqua A., Fröhlich S., “Willmore surfaces of revolution with two prescribed boundary circles”, J. of Geometric Analysis, 23:1 (2013), 283–302 | DOI | MR | Zbl
[3] Dall'Acqua A., Fröhlich S., Grunau H.-C., Schieweck F., “Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data”, Adv. in Calculus of Variations, 4:1 (2011), 1–81 | DOI | MR | Zbl
[4] Langer J., Singer D. A., “Curves in the hyperbolic plane and mean curvature of tori in 3-space”, Bull. of the London Math. Soc., 16:5 (1984), 531–534 | DOI | MR | Zbl
[5] Abramowitz M., Stegun I. A., Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Courier Dover Publ., New York, 1972 | Zbl