On Willmore Surfaces of Revolution in $\mathbb{R}^3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 887-890 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study Euler–Lagrange equation for the Willmore functional in the case of surfaces of revolution. Explicit solutions are constructed in terms of elliptic functions.
Keywords: Willmore surface
Mots-clés : exact solution.
@article{SEMR_2014_11_a43,
     author = {S. M. Cherosova and E. I. Shamaev},
     title = {On {Willmore} {Surfaces} of {Revolution} in $\mathbb{R}^3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {887--890},
     year = {2014},
     volume = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/}
}
TY  - JOUR
AU  - S. M. Cherosova
AU  - E. I. Shamaev
TI  - On Willmore Surfaces of Revolution in $\mathbb{R}^3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 887
EP  - 890
VL  - 11
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/
LA  - ru
ID  - SEMR_2014_11_a43
ER  - 
%0 Journal Article
%A S. M. Cherosova
%A E. I. Shamaev
%T On Willmore Surfaces of Revolution in $\mathbb{R}^3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 887-890
%V 11
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/
%G ru
%F SEMR_2014_11_a43
S. M. Cherosova; E. I. Shamaev. On Willmore Surfaces of Revolution in $\mathbb{R}^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 887-890. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a43/

[1] Willmore T. J., “Note on embedded surfaces”, An. Şti. Univ. “Al. I. Cuza” Iaşi, Secţ. IaM at., 11B (1965), 493–496 | MR | Zbl

[2] Bergner M., Dall'Acqua A., Fröhlich S., “Willmore surfaces of revolution with two prescribed boundary circles”, J. of Geometric Analysis, 23:1 (2013), 283–302 | DOI | MR | Zbl

[3] Dall'Acqua A., Fröhlich S., Grunau H.-C., Schieweck F., “Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data”, Adv. in Calculus of Variations, 4:1 (2011), 1–81 | DOI | MR | Zbl

[4] Langer J., Singer D. A., “Curves in the hyperbolic plane and mean curvature of tori in 3-space”, Bull. of the London Math. Soc., 16:5 (1984), 531–534 | DOI | MR | Zbl

[5] Abramowitz M., Stegun I. A., Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Courier Dover Publ., New York, 1972 | Zbl