Stability of integral persistence diagrams
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 130-141
Cet article a éte moissonné depuis la source Math-Net.Ru
We define concept of integral persistent diagram which involve geometrical characteristics of excursion sets and prove stability of such diagrams.
Keywords:
computational topology, stability.
Mots-clés : persistence
Mots-clés : persistence
@article{SEMR_2014_11_a40,
author = {A. E. Abzhanov and Ya. V. Bazaikin},
title = {Stability of integral persistence diagrams},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {130--141},
year = {2014},
volume = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a40/}
}
A. E. Abzhanov; Ya. V. Bazaikin. Stability of integral persistence diagrams. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 130-141. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a40/
[1] H. Edelsbunner, D. Letscher, A. Zomorodian, “Topological persistence and simplification”, Discrete Comput. Geom., 28 (2002), 511–533 | DOI | MR
[2] G. Carlsson, A. Zomorodian, “Computing persistent homology”, Proc. 20th Ann. Sympos. Comput. Geom. (2004), 347–356 | MR
[3] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, “Stability of Persistence Diagrams”, Discrete Computational Geometry, 37:1 (2007), 103–120 | DOI | MR | Zbl