Stability of integral persistence diagrams
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 130-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define concept of integral persistent diagram which involve geometrical characteristics of excursion sets and prove stability of such diagrams.
Keywords: computational topology, stability.
Mots-clés : persistence
@article{SEMR_2014_11_a40,
     author = {A. E. Abzhanov and Ya. V. Bazaikin},
     title = {Stability of integral persistence diagrams},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {130--141},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a40/}
}
TY  - JOUR
AU  - A. E. Abzhanov
AU  - Ya. V. Bazaikin
TI  - Stability of integral persistence diagrams
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 130
EP  - 141
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a40/
LA  - ru
ID  - SEMR_2014_11_a40
ER  - 
%0 Journal Article
%A A. E. Abzhanov
%A Ya. V. Bazaikin
%T Stability of integral persistence diagrams
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 130-141
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a40/
%G ru
%F SEMR_2014_11_a40
A. E. Abzhanov; Ya. V. Bazaikin. Stability of integral persistence diagrams. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 130-141. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a40/

[1] H. Edelsbunner, D. Letscher, A. Zomorodian, “Topological persistence and simplification”, Discrete Comput. Geom., 28 (2002), 511–533 | DOI | MR

[2] G. Carlsson, A. Zomorodian, “Computing persistent homology”, Proc. 20th Ann. Sympos. Comput. Geom. (2004), 347–356 | MR

[3] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, “Stability of Persistence Diagrams”, Discrete Computational Geometry, 37:1 (2007), 103–120 | DOI | MR | Zbl