Generalised BK-frames
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 210-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define general $\mathbf{BK}$-frames with two different approaches. We prove that our semantic of general $\mathbf{BK}$-frames is as strong as the algebraic semantic of twist-structures. Then we formulate the p-morphism theorem.
Keywords: BK-frame, twist-structure, general frame
Mots-clés : belnapian modal logic, modal algebra, p-morphism.
@article{SEMR_2014_11_a4,
     author = {E. I. Latkin},
     title = {Generalised {BK-frames}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {210--219},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a4/}
}
TY  - JOUR
AU  - E. I. Latkin
TI  - Generalised BK-frames
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 210
EP  - 219
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a4/
LA  - ru
ID  - SEMR_2014_11_a4
ER  - 
%0 Journal Article
%A E. I. Latkin
%T Generalised BK-frames
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 210-219
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a4/
%G ru
%F SEMR_2014_11_a4
E. I. Latkin. Generalised BK-frames. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 210-219. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a4/

[1] S. P. Odintsov, H. Wansing, “Modal logics with Belnapian truth values”, Journal of Applied Non-Classical Logics, 20:3 (2010), 270–301 | DOI | MR

[2] S. P. Odintsov, Constructive Negations And Paraconsistency, Trends in Logic, 26, Springer, 2008 | MR | Zbl

[3] E. I. Latkin, “Obobschënnaya semantika Kripke dlya logiki Nelsona”, Algebra i logika, 49:5 (2010), 630–-653 | MR | Zbl

[4] A. Chagrov, M. Zakharyaschev, Modal logic, Clarendon Press, Oxford, 1997 | MR | Zbl

[5] E. I. Latkin, “Modeli dlya logik Nelsona i diz'yunktivnoe svoistvo”, Vychislimost i modeli, Trudy mezhdunarodnoi konferentsii, 2010, 65–72

[6] S. P. Odintsov, E. I. Latkin, “BK-lattices. Algebraic semantics for Belnapian modal logics”, Studia Logica, 100:1–2 (2012), 319–338 | DOI | MR | Zbl

[7] L. L. Maksimova, “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR | Zbl