Generalised BK-frames
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 210-219

Voir la notice de l'article provenant de la source Math-Net.Ru

We define general $\mathbf{BK}$-frames with two different approaches. We prove that our semantic of general $\mathbf{BK}$-frames is as strong as the algebraic semantic of twist-structures. Then we formulate the p-morphism theorem.
Keywords: BK-frame, twist-structure, general frame
Mots-clés : belnapian modal logic, modal algebra, p-morphism.
@article{SEMR_2014_11_a4,
     author = {E. I. Latkin},
     title = {Generalised {BK-frames}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {210--219},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a4/}
}
TY  - JOUR
AU  - E. I. Latkin
TI  - Generalised BK-frames
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 210
EP  - 219
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a4/
LA  - ru
ID  - SEMR_2014_11_a4
ER  - 
%0 Journal Article
%A E. I. Latkin
%T Generalised BK-frames
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 210-219
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a4/
%G ru
%F SEMR_2014_11_a4
E. I. Latkin. Generalised BK-frames. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 210-219. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a4/