Supremum asymptotics for random walk with switching
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 999-1020.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random walk $X_n, n\geq 0$ with one level of switching $a\leq 0.$ Some theorems on the asymptotics of the supremum distribution $\mathbf{P}\left(\sup\limits_{n} X_n>x\right)$ as $x\to\infty,$ $a\to -\infty$ were obtained in Cramer case.
Keywords: random walk with switching, supremum asymptotics.
@article{SEMR_2014_11_a38,
     author = {D. K. Kim},
     title = {Supremum asymptotics for random walk with switching},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {999--1020},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a38/}
}
TY  - JOUR
AU  - D. K. Kim
TI  - Supremum asymptotics for random walk with switching
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 999
EP  - 1020
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a38/
LA  - ru
ID  - SEMR_2014_11_a38
ER  - 
%0 Journal Article
%A D. K. Kim
%T Supremum asymptotics for random walk with switching
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 999-1020
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a38/
%G ru
%F SEMR_2014_11_a38
D. K. Kim. Supremum asymptotics for random walk with switching. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 999-1020. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a38/

[1] A. A. Borovkov, “Predelnoe raspredelenie dlya ostsilliruyuschego sluchainogo bluzhdaniya”, Teoriya veroyatnostei i ee primeneniya, 25:3 (1980), 663–665 | MR

[2] J. H. Kemperman, “The oscillating random walk”, Stoch. Proc. Appl., 2:1 (1974), 1–29 | DOI | MR | Zbl

[3] J. Keilson, L. D. Servi, “Oscillating random walk models for GI/G/I vacation systems with Bernoulli schedules”, J. Appl. Probab., 23 (1986), 790–802 | DOI | MR | Zbl

[4] B. A. Rogozin, S. G. Foss, “Vozvratnost ostsilliruyuschego sluchainogo bluzhdaniya”, Teoriya veroyatnostei i ee primeneniya, 23:1 (1978), 161–169 | MR | Zbl

[5] T. Kadankova, Exit problems for oscillating compound Poisson process, arXiv: 1101.5279

[6] Kyprianou A. E., Loeffen R. L., “Refracted Lévy processes”, Annales De L Institut Henri Poincare-Probabilites Et Statistiques, 46:1 (2010), 24–44 | DOI | MR | Zbl

[7] V. I. Prokhorov, “Upravlenie vinerovskim protsessom pri ogranichennom chisle pereklyuchenii”, Tr. Mat. in-ta im. V. A. Steklova, 71, 1964, 82–87 | Zbl

[8] D. V. Gusak, “Ob ostsilliruyuschikh skhemakh sluchainogo bluzhdaniya, 1”, Teoriya veroyatnostei i matematicheskaya statistika, 39 (1988), 33–39 | MR | Zbl

[9] D. V. Gusak, “Ob ostsilliruyuschikh skhemakh sluchainogo bluzhdaniya, 2”, Teoriya veroyatnostei i matematicheskaya statistika, 40 (1989), 11–17 | MR

[10] D. V. Gusak, “Ostsilliruyuschie protsessy s nezavisimymi prirascheniyami i nevyrozhdennoi vinerovskoi komponentoi”, Ukr. mat. zhurn., 42:10 (1990), 1415–1421 | MR | Zbl

[11] N. S. Bratiichuk, D. V. Gusak, “Ergodicheskoe raspredelenie ostsilliruyuschego protsessa s nezavisimymi prirascheniyami”, Ukr. mat. zhurn., 38:5 (1986), 547–554 | MR | Zbl

[12] V. I. Lotov, “Ob ostsilliruyuschikh sluchainykh bluzhdaniyakh”, Sib. mat. zhurn., 37:4 (1996), 869–880 | MR | Zbl

[13] D. K. Kim, V. I. Lotov, “Ob ostsilliruyuschikh sluchainykh bluzhdaniyakh s dvumya urovnyami pereklyuchenii”, Matematicheskie trudy, 6:1 (2003), 34–74 | MR

[14] D. K. Kim, V. I. Lotov, “Asimptotika statsionarnogo raspredeleniya ostsilliruyuschego sluchainogo bluzhdaniya”, Sib. mat. zhurnal, 45:5 (2004), 1112–1129 | MR | Zbl

[15] D. K. Kim, “Asimptoticheskii analiz ostsilliruyuschikh sluchainykh bluzhdanii”, Matematicheskie trudy, 8:2 (2005), 137–167 | MR | Zbl

[16] A. A. Borovkov, D. A. Korshunov, “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Chast 1: Statsionarnye raspredeleniya”, Teoriya veroyatnostei i ee primeneniya, 41:1 (1996), 3–30 | DOI | MR | Zbl

[17] A. A. Borovkov, D. A. Korshunov, “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Chast 2: Dostatsionarnye raspredeleniya v eksponentsialnom sluchae”, Teoriya veroyatnostei i ee primeneniya, 45:3 (2000), 437–468 | DOI | MR | Zbl

[18] A. A. Borovkov, D. A. Korshunov, “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Chast 3: Dostatsionarnye raspredeleniya v subeksponentsialnom sluchae”, Teoriya veroyatnostei i ee primeneniya, 46:4 (2001), 640–657 | DOI | MR | Zbl

[19] A. A. Borovkov, “Novye predelnye teoremy v granichnykh zadachakh dlya summ nezavisimykh slagaemykh”, Sib. mat. zhurn., 3:5 (1962), 645–694 | MR | Zbl

[20] V. I. Lotov, “Asimptoticheskii analiz raspredelenii v dvugranichnykh zadachakh, 1”, Teoriya veroyatnostei i ee primeneniya, 24:3 (1979), 475–485 | MR | Zbl

[21] A. A. Borovkov, Teoriya veroyatnostei, Editorial URSS, M., 1986 | MR | Zbl

[22] V. I. Lotov, “Predelnye teoremy v odnoi granichnoi zadache dlya sluchainykh bluzhdanii”, Sib. mat. zhurn., 40:5 (1999), 1095–1108 | MR | Zbl