Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a33, author = {O. V. Pugachev}, title = {Support of diffusion on a cluster {Poisson} space}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {327--333}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a33/} }
O. V. Pugachev. Support of diffusion on a cluster Poisson space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 327-333. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a33/
[1] Bogachev V. I., Differentsiruemye mery i ischislenie Mallyavena, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008
[2] Bogachev V. I., Pugachev O. V., Rekner M., “Poverkhnostnye mery i plotnost sobolevskikh emkostei na prostranstve Puassona”, DAN, 386:1 (2002), 295–299 | MR | Zbl
[3] Pugachev O. V., “Prostranstvo prostykh konfiguratsii yavlyaetsya polskim”, Matematicheskie zametki, 71:4 (2002), 581–589 | DOI | MR | Zbl
[4] Albeverio S., Kondratiev Yu. G., Röckner M., “Analysis and geometry on configuration spaces”, J. Funct. Anal., 154:2 (1998), 444–500 | DOI | MR | Zbl
[5] Albeverio S., Kondratiev Yu. G., Röckner M., “Analysis and geometry on configuration spaces: the Gibbsian case”, J. Funct. Anal., 157:1 (1998), 242–291 | DOI | MR | Zbl
[6] Bogachev L., Daletskii A., “Poisson cluster measures: Quasi-invariance, integration by parts and equilibrium stochastic dynamics”, J. Funct. Anal., 256:1 (2009), 432–478 | DOI | MR | Zbl
[7] Ma Zhi-Ming, Röckner M., “Construction of diffusions on configuration spaces”, Osaka J. Math., 37 (2000), 273–314 | MR | Zbl
[8] Röckner M., Schmuland B., “A support property for infinite-dimensional interacting diffusion processes”, C. R. Acad. Sci. Paris, Série I, 326 (1998), 359–364 | DOI | MR | Zbl