Support of diffusion on a cluster Poisson space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 327-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that in a space of cluster Poisson configurations on $\mathbb R^d$, under certain conditions, the set of configurations with multiple points has zero $C_{1,2}$ Sobolev capacity. Hence stationary diffusions on this space are supported by the subset of configurations without multiple points.
Mots-clés : cluster Poisson configurations, diffusion.
Keywords: capacity
@article{SEMR_2014_11_a33,
     author = {O. V. Pugachev},
     title = {Support of diffusion on a cluster {Poisson} space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {327--333},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a33/}
}
TY  - JOUR
AU  - O. V. Pugachev
TI  - Support of diffusion on a cluster Poisson space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 327
EP  - 333
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a33/
LA  - ru
ID  - SEMR_2014_11_a33
ER  - 
%0 Journal Article
%A O. V. Pugachev
%T Support of diffusion on a cluster Poisson space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 327-333
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a33/
%G ru
%F SEMR_2014_11_a33
O. V. Pugachev. Support of diffusion on a cluster Poisson space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 327-333. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a33/

[1] Bogachev V. I., Differentsiruemye mery i ischislenie Mallyavena, v. 1, 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008

[2] Bogachev V. I., Pugachev O. V., Rekner M., “Poverkhnostnye mery i plotnost sobolevskikh emkostei na prostranstve Puassona”, DAN, 386:1 (2002), 295–299 | MR | Zbl

[3] Pugachev O. V., “Prostranstvo prostykh konfiguratsii yavlyaetsya polskim”, Matematicheskie zametki, 71:4 (2002), 581–589 | DOI | MR | Zbl

[4] Albeverio S., Kondratiev Yu. G., Röckner M., “Analysis and geometry on configuration spaces”, J. Funct. Anal., 154:2 (1998), 444–500 | DOI | MR | Zbl

[5] Albeverio S., Kondratiev Yu. G., Röckner M., “Analysis and geometry on configuration spaces: the Gibbsian case”, J. Funct. Anal., 157:1 (1998), 242–291 | DOI | MR | Zbl

[6] Bogachev L., Daletskii A., “Poisson cluster measures: Quasi-invariance, integration by parts and equilibrium stochastic dynamics”, J. Funct. Anal., 256:1 (2009), 432–478 | DOI | MR | Zbl

[7] Ma Zhi-Ming, Röckner M., “Construction of diffusions on configuration spaces”, Osaka J. Math., 37 (2000), 273–314 | MR | Zbl

[8] Röckner M., Schmuland B., “A support property for infinite-dimensional interacting diffusion processes”, C. R. Acad. Sci. Paris, Série I, 326 (1998), 359–364 | DOI | MR | Zbl