On exponential inequalities for V-statistics with unbounded kernels
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 200-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exponential inequalities for V-statistics are obtained under weaker conditions than that in known results for canonical V-statistics (see Borisov (1991)). In particular, the observations independence condition is weakened and the new inequalities do not require the existence of a factorizable majorant for the kernel.
Mots-clés : von Mises' statistic
Keywords: exponential inequality.
@article{SEMR_2014_11_a32,
     author = {P. S. Ruzankin},
     title = {On exponential inequalities for {V-statistics} with unbounded kernels},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {200--206},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a32/}
}
TY  - JOUR
AU  - P. S. Ruzankin
TI  - On exponential inequalities for V-statistics with unbounded kernels
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 200
EP  - 206
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a32/
LA  - ru
ID  - SEMR_2014_11_a32
ER  - 
%0 Journal Article
%A P. S. Ruzankin
%T On exponential inequalities for V-statistics with unbounded kernels
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 200-206
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a32/
%G ru
%F SEMR_2014_11_a32
P. S. Ruzankin. On exponential inequalities for V-statistics with unbounded kernels. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 200-206. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a32/

[1] Borisov I. S., “Approksimatsiya raspredelenii statistik Mizesa s mnogomernymi yadrami”, Sib. mat. zhurn., 32:4 (1991), 20–35 | MR

[2] Borisov I. S., Volodko N. V., “Eksponentsialnye neravenstva dlya raspredelenii $U$- i $V$-statistik ot zavisimykh nablyudenii”, Matem. tr., 11:2, 3–19 | MR | Zbl

[3] Ruzankin P. S., “Ob eksponentsialnykh neravenstvakh dlya kanonicheskikh $V$-statistik”, Sibirskie elektronnye matematicheskie izvestiya, 11 (2008), 70–75 http://semr.math.nsc.ru/v11/p70-75.pdf | MR

[4] Adamczak R., “Moment inequalities for U-statistics”, Ann. Probab., 34:6 (2006), 2288–2314 | DOI | MR | Zbl

[5] Arcones M. A., Giné E., “Limit theorems for U-processes”, Ann. Probab., 21:3 (2003), 1494–1542 | DOI | MR

[6] Giné E., Latala R., Zinn J., “Exponential and moment inequalities for U-statistics”, High Dimensional Probability (Seattle, WA, 1999), v. II, Progr. Probab., 47, Birkhäuser, Boston, 2000, 13–38 | MR | Zbl

[7] Giné E., Mason D. M., “On local U-statistic processes and the estimation of densities of functions of several sample variables”, Ann. Stat., 35:3 (2007), 1105–1145 | DOI | MR | Zbl

[8] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58 (1963), 13–30 | DOI | MR | Zbl