On intersections of triples of nilpotent subgroups in finite solvable groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 207-209
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that for every nilpotent subgroups $A,B,C$ of finite solvable group $G$ we have $A\cap B^x\cap C^y\le F(G)$ for some elements $x,y\in G$.
Mots-clés :
finite solvable group
Keywords: nilpotent subgroup.
Keywords: nilpotent subgroup.
@article{SEMR_2014_11_a3,
author = {V. I. Zenkov},
title = {On intersections of triples of nilpotent subgroups in finite solvable groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {207--209},
year = {2014},
volume = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a3/}
}
V. I. Zenkov. On intersections of triples of nilpotent subgroups in finite solvable groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 207-209. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a3/
[1] D. S. Passman, “Groups with normal, solvable Hall $p'$-subgroups”, Trans. Amer. Math. Soc., 123:1 (1966), 99–111 | MR | Zbl
[2] V. I. Zenkov, “Struktura peresechenii nilpotentnykh $\pi$-podgrupp v $\pi$-razreshimykh konechnykh gruppakh”, Sib. matem. zhurn., 34 (1993), 103–107 | MR | Zbl
[3] Kourovskaya tetrad. Nereshennye zadachi teorii grupp, Izd. 17-e, IM SO RAN, Novosibirsk, 2010