Convergence rate estimators for the number of ones in outcome sequence of MCV generator with $m$-dependent registers items
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 18-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is focused on studying properties of the number of ones $\xi_{r}$ in outcome sequence of MCV generator with $r$ registers over $GF(2).$ We concern on the case when generator outcome sequence has length close to the cycle length and registers filled with $m$-dependent binary random variables. Exact expressions for mean and variance of ${{\xi }_{r}}$ are given. We derive estimate in uniform metric between cumulative distribution functions of the standardized number of ones in MCV generator outcome sequence and product of $r$ independent standard normal random variables. The estimate allows to prove limit theorem for ${{\xi }_{r}}$ when number $r$ is fixed. We also estimate distance (in uniform metric) between the cumulative distribution function of normalized $\xi_{r}$ and log-normal distribution law. This result allows to prove a normal-type limit theorem for $r\to \infty$.
Keywords: MCV generator, normal-type limit theorem, uniform distance estimate, m-dependent random variables.
@article{SEMR_2014_11_a29,
     author = {N. M. Mezhennaya},
     title = {Convergence rate estimators for the number of ones in outcome sequence of {MCV} generator with $m$-dependent registers items},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {18--25},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a29/}
}
TY  - JOUR
AU  - N. M. Mezhennaya
TI  - Convergence rate estimators for the number of ones in outcome sequence of MCV generator with $m$-dependent registers items
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 18
EP  - 25
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a29/
LA  - en
ID  - SEMR_2014_11_a29
ER  - 
%0 Journal Article
%A N. M. Mezhennaya
%T Convergence rate estimators for the number of ones in outcome sequence of MCV generator with $m$-dependent registers items
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 18-25
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a29/
%G en
%F SEMR_2014_11_a29
N. M. Mezhennaya. Convergence rate estimators for the number of ones in outcome sequence of MCV generator with $m$-dependent registers items. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 18-25. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a29/

[1] Pohl P., “Description of MCV, a pseudo-random number generator”, Scand. Actuarial J., 1 (1976), 1–14 | DOI | MR | Zbl

[2] Mezhennaya N. M., Mikhailov V. G., “Estimators and limit theorems for the number of ones in MCV generator outcome sequence”, Mathematical Aspects of Cryptography, 5:1 (2014) (in russian)

[3] Ibragimov I. A., Linnik Yu. V., Independent and stationary related variables, Nauka, M., 1965, 524 pp. | MR

[4] Tyurin I. S., “An improvement of the residual in the Lyapunov theorem”, Teor. Veroyatnost. i Primenen., 56:4 (2011), 808–811 | DOI | MR

[5] Shiryaev A. N., Probability, Nauka, M., 1980, 576 pp. | MR | Zbl

[6] Baldi P., Rinott Y., “On normal approximations of distributions in terms of dependency graph”, Ann. Probab., 17:4 (1989), 1646–1650 | DOI | MR | Zbl