Spectra of automorphic extensions of finite simple symplectic and~orthogonal groups over fields of characteristic~2
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 823-832.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the spectrum of any nontrivial automorphic extension of a finite simple symplectic or orthogonal group $S$ over a field of characteristic $2$ differs from the spectrum of $S$.
Keywords: Finite simple group, automorphic extension, element order, spectrum of a group.
@article{SEMR_2014_11_a25,
     author = {M. A. Zvezdina},
     title = {Spectra of automorphic extensions of finite simple symplectic and~orthogonal groups over fields of characteristic~2},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {823--832},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a25/}
}
TY  - JOUR
AU  - M. A. Zvezdina
TI  - Spectra of automorphic extensions of finite simple symplectic and~orthogonal groups over fields of characteristic~2
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 823
EP  - 832
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a25/
LA  - en
ID  - SEMR_2014_11_a25
ER  - 
%0 Journal Article
%A M. A. Zvezdina
%T Spectra of automorphic extensions of finite simple symplectic and~orthogonal groups over fields of characteristic~2
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 823-832
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a25/
%G en
%F SEMR_2014_11_a25
M. A. Zvezdina. Spectra of automorphic extensions of finite simple symplectic and~orthogonal groups over fields of characteristic~2. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 823-832. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a25/

[1] V. D. Mazurov, E. I. Khukhro (eds.), The Kourovka notebook. Unsolved problems in group theory, 18 ed., Institute of Mathematics, Russian Academy of Sciences, Siberian Div., Novosibirsk, 2014 | Zbl

[2] A. V. Vasil'ev, M. A. Grechkoseeva, On the structure of finite groups isospectral to finite simple groups, 2014, arXiv: 1409.8086

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[4] A. A. Buturlakin, “Spectra of finite symplectic and orthogonal groups”, Siberian Adv. Math., 21:3 (2011), 176–210 | DOI | MR

[5] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR | Zbl

[6] A. V. Vasil'ev, E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group”, Algebra and Logic, 50:4 (2011), 291–322 | DOI | MR | Zbl

[7] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, 40.3, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[8] A. V. Zavarnitsine, “Recognition of the simple groups $U_3(q)$ by element orders”, Algebra and Logic, 45:2 (2006), 106–116 | DOI | MR | Zbl

[9] V. D. Mazurov, “Characterizations of finite groups by sets of orders of their elements”, Algebra and Logic, 36:1 (1997), 23–32 | DOI | MR | Zbl

[10] I. B. Gorshkov, “Recognition of finite simple groups with orders having prime divisors at most $17$ by the spectrum”, Sib. Élektron. Mat. Izv., 7 (2010), 14–20 | MR

[11] A. M. Staroletov, “On recognition by spectrum of the simple groups $B_3(q)$, $C_3(q)$ and $D_4(q)$”, Siberian Math. J., 53:3 (2012), 532–538 | DOI | MR | Zbl