$\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 759-770.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the structure of $\Gamma$-conformal algebras which are discrete analogues of conformal algebras in sense of V. G. Kac. Simple and semisimple Lie $\Gamma$-conformal algebras of finite type in zero characteristic for torsion-free group $\Gamma$ are classified.
Mots-clés : conformal algebra, $\Gamma$-conformal algebra
Keywords: finitary algebra.
@article{SEMR_2014_11_a23,
     author = {V. Yu. Gubarev and P. S. Kolesnikov},
     title = {$\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {759--770},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a23/}
}
TY  - JOUR
AU  - V. Yu. Gubarev
AU  - P. S. Kolesnikov
TI  - $\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 759
EP  - 770
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a23/
LA  - ru
ID  - SEMR_2014_11_a23
ER  - 
%0 Journal Article
%A V. Yu. Gubarev
%A P. S. Kolesnikov
%T $\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 759-770
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a23/
%G ru
%F SEMR_2014_11_a23
V. Yu. Gubarev; P. S. Kolesnikov. $\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 759-770. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a23/

[1] V. G. Kac, Vertex algebras for beginners, Amer. Math. Soc., Providence, RI, 1998 | MR

[2] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[3] R. E. Borcherds, “Vertex algebras, Kac-Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. U.S.A., 83:10 (1986), 3068–3071 | DOI | MR

[4] C. Dong, J. Lepowski, Generalized vertex algebras and relative vertex operators, Progress in Math., 112, Birkhauser, Boston, 1993 | MR | Zbl

[5] I. B. Frenkel, J. Lepowsky, A. Meurman, Vertex operator algebras and the Monster, Pure and Applied Math., 134, Academic Press, New York, 1998

[6] A. D'Andrea, V. G. Kac, “Structure theory of finite conformal algebras”, Selecta Math. (N.S.), 4:3 (1998), 377–418 | DOI | MR | Zbl

[7] B. Bakalov, A. D'Andrea, V. G. Kac, “Theory of finite pseudoalgebras”, Adv. Math., 162:1 (2001), 1–140 | DOI | MR | Zbl

[8] E. I. Zelmanov, “On the structure of conformal algebras”, Proceedings of Intern. Conf. on Combinatorial and Computational Algebra (May 24–29, 1999, Hong Kong), Contemp. Math., 264, 2000, 139–153 | DOI | MR | Zbl

[9] P. Kolesnikov, “Simple associative conformal algebras of linear growth”, J. Algebra, 295:1 (2006), 247–268 | DOI | MR | Zbl

[10] M. I. Golenishcheva-Kutuzova, V. G. Kac, “$\Gamma$-conformal algebras”, J. Math. Phys., 39:4 (1998), 2290–2305 | DOI | MR | Zbl

[11] H. Li, “On certain generalizations of twisted affine Lie algebras and quasimodules for $\Gamma$-vertex algebras”, J. of Pure and Applied Algebra, 209:3 (2007), 853–871 | DOI | MR | Zbl

[12] P. Kolesnikov, “On irreducible algebras of conformal endomorphisms over a linear algebraic group”, Journal of Mathematical Sciences, 161:1 (2009), 41–56 | DOI | MR | Zbl

[13] V. Gubarev, P. Kolesnikov, “Embedding of dendriform algebras into Rota-Baxter algebras”, Cent. Eur. J. Math., 11:2 (2013), 226–245 | DOI | MR | Zbl

[14] P. Kolesnikov, “Varieties of dialgebras and conformal algebras”, Sib. Math. Jour., 49:2 (2008), 257–272 | DOI | MR | Zbl

[15] V. Yu. Gubarev, “Prostye assotsiativnye $\Gamma$-konformnye algebry konechnogo tipa dlya gruppy $\Gamma$ bez krucheniya”, Algebra i Logika, 52:5 (2013), 559–581 | MR

[16] A. A. Baranov, “Finitary Simple Lie Algebras”, J. of Algebra, 219:1 (1999), 299–329 | DOI | MR | Zbl

[17] I. Kaplansky, Bialgebras, Lecture Notes in Mathematics, Univ. of Chicago, Chicago, 1975 | MR