$\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 759-770

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the structure of $\Gamma$-conformal algebras which are discrete analogues of conformal algebras in sense of V. G. Kac. Simple and semisimple Lie $\Gamma$-conformal algebras of finite type in zero characteristic for torsion-free group $\Gamma$ are classified.
Mots-clés : conformal algebra, $\Gamma$-conformal algebra
Keywords: finitary algebra.
@article{SEMR_2014_11_a23,
     author = {V. Yu. Gubarev and P. S. Kolesnikov},
     title = {$\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {759--770},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a23/}
}
TY  - JOUR
AU  - V. Yu. Gubarev
AU  - P. S. Kolesnikov
TI  - $\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 759
EP  - 770
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a23/
LA  - ru
ID  - SEMR_2014_11_a23
ER  - 
%0 Journal Article
%A V. Yu. Gubarev
%A P. S. Kolesnikov
%T $\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 759-770
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a23/
%G ru
%F SEMR_2014_11_a23
V. Yu. Gubarev; P. S. Kolesnikov. $\Gamma$-conformal algebras of finite type for torsion-free group $\Gamma$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 759-770. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a23/