On Shunkov group saturated with $GL_2(p^n)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 734-744.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove, that the periodic Shunkov group, saturated by full linear groups of dimension two over finite fields of the fixed characteristic, is isomorphic to full linear group of dimension two over locally finite field.
Keywords: Group saturated with a set of groups.
@article{SEMR_2014_11_a21,
     author = {A. A. Shlyopkin and I. V. Sabodakh},
     title = {On {Shunkov} group saturated with $GL_2(p^n)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {734--744},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a21/}
}
TY  - JOUR
AU  - A. A. Shlyopkin
AU  - I. V. Sabodakh
TI  - On Shunkov group saturated with $GL_2(p^n)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 734
EP  - 744
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a21/
LA  - ru
ID  - SEMR_2014_11_a21
ER  - 
%0 Journal Article
%A A. A. Shlyopkin
%A I. V. Sabodakh
%T On Shunkov group saturated with $GL_2(p^n)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 734-744
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a21/
%G ru
%F SEMR_2014_11_a21
A. A. Shlyopkin; I. V. Sabodakh. On Shunkov group saturated with $GL_2(p^n)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 734-744. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a21/

[1] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, 1975 | MR

[2] A. A. Duzh, A. A. Shlepkin, “O gruppakh Shunkova, nasyschennykh pryamymi proizvedeniyami grupp”, Vladikavkazskii matematicheskii zhurnal, 12 (2012), 123–126 | MR | Zbl

[3] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR

[4] A. A. Kuznetsov, D. V. Lytkina, L. R. Tukhvatullina, K. A. Filippov, Gruppy s usloviem nasyschennosti, KrasGAU, Krasnoyarsk, 2010, 254 pp.

[5] A. A. Kuznetsov, K. A. Filippov, “Gruppy, nasyschennye zadannym mnozhestvom grupp”, Sibirskie elektronnye matematicheskie izvestiya, 8 (2011), 230–246 | MR

[6] A. G. Rubashkin, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh gruppami $L_{2}(p^n)$”, Sib. matem. zhurn., 46:6 (2005), 1388–1392 | MR | Zbl

[7] A. A. Shlepkin, “O gruppakh, nasyschennykh $GL_{2}(p^{n})$”, Vestnik SibGAU, 1 (2013), 100–108

[8] A. K. Shlepkin, “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, Sb. tezisov 3-i mezhdunar. konf. po algebre (Krasnoyarsk, 1993), 363

[9] V. P. Shunkov, “Ob odnom klasse $p$-grupp”, Algebra i Logika, 9:4 (1970), 484–496 | MR

[10] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i Logika, 11:4 (1972), 470–493 | MR

[11] B. Amberg, L. S. Kazarin, “On periodic groups saturated by dihedral subgroups”, Proceedings Ischia Group Theory Conference (2010)

[12] V. M. Busarkin, Yu. M. Gorchakov, Konechnye rasscheplyaemye gruppy, Nauka, M., 1968 | MR

[13] R. W. Carter, Simple groups of Lie type, John Wiley Sons, London, 1972 | MR | Zbl

[14] K. Harada, Mong Lung Lang, “Indecompsable Sylow 2-subgroups of Simple Groups”, Acta Applicandae Mathematicae, 85:1–3 (2005), 161–194 | DOI | MR | Zbl