On finite non-simple $4$-primary groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 695-708

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite $4$-primary group with disconnected prime graph, $\pi_1(G) = \{2,3,r\}$ for $r \in \{5,7\}$, $G/F(G)$ is a nonsimple almost simple group non isomorphic to $S_4(9).2$. In this paper, all chief factors of $G$ are described.
Keywords: finite group, prime graph, $4$-primary group, chief factor.
@article{SEMR_2014_11_a20,
     author = {I. V. Khramtsov},
     title = {On finite non-simple $4$-primary groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {695--708},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a20/}
}
TY  - JOUR
AU  - I. V. Khramtsov
TI  - On finite non-simple $4$-primary groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 695
EP  - 708
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a20/
LA  - ru
ID  - SEMR_2014_11_a20
ER  - 
%0 Journal Article
%A I. V. Khramtsov
%T On finite non-simple $4$-primary groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 695-708
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a20/
%G ru
%F SEMR_2014_11_a20
I. V. Khramtsov. On finite non-simple $4$-primary groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 695-708. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a20/