On stability of unipotent automorphism groups of a vector space over a division ring
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 119-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a wide class of vector spaces over skew-fields we prove that a group of unipotent automorphisms is conjugate to a group of triangular matrices.
Keywords: skew linear groups, unipotent subgroups, division ring, stability subgroup.
@article{SEMR_2014_11_a2,
     author = {A. A. Korobov},
     title = {On stability of unipotent automorphism groups of a vector space over a division ring},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a2/}
}
TY  - JOUR
AU  - A. A. Korobov
TI  - On stability of unipotent automorphism groups of a vector space over a division ring
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 119
EP  - 129
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a2/
LA  - ru
ID  - SEMR_2014_11_a2
ER  - 
%0 Journal Article
%A A. A. Korobov
%T On stability of unipotent automorphism groups of a vector space over a division ring
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 119-129
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a2/
%G ru
%F SEMR_2014_11_a2
A. A. Korobov. On stability of unipotent automorphism groups of a vector space over a division ring. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 119-129. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a2/

[1] Yu. I. Merzlyakov, Ratsionalnye gruppy, Nauka, M., 1987

[2] D. A. Suprunenko, “Ob unipotentnykh gruppakh matrits nad telom”, Dokl. AN SSSR, 247:2 (1979), 289–291 | MR | Zbl

[3] J. Derakhshan, F. J. Wagner, “Skew linear unipotent groups”, Bull. London Math. Soc., 38:3 (2006), 447–449 | DOI | MR | Zbl

[4] H. Y. Mochizuki, “Unipotent matrix groups over division rings”, Canad. Math. Bull., 21:2 (1978), 249–250 | DOI | MR | Zbl

[5] V. N. Serezhkin, “Triangulability of unipotent linear groups of degree 4 over an arbitrary skewfield”, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, 3 (1985), 12–-18 | MR | Zbl

[6] M. Shirvani, B. A. F. Wehrfritz, Skew linear groups, Cambridge University Press, Cambridge, 1986 | MR | Zbl

[7] V. P. Shunkov, $T_{0}$-gruppy, Nauka, Novosibirsk, 2000

[8] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969

[9] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982

[10] M. I. Kargapolov, “O probleme O. Yu. Shmidta”, Sib. matem. zhurn., 4:1 (1963), 232–-235 | MR | Zbl

[11] Kourovskaya tetrad: Nereshennye voprosy teorii grupp, izd. 9, IM SO RAN, Novosibirsk, 1984