Reduced Lie ternary algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 508-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a notion of variety of RLT-algebras as a variety of ternary anticommutative algebras such that the Jacobian $J(x,y,z;u,v)$ (see (3)) is skew-symmetric in all the arguments. The algebras in this variety possess the property that their reduced algebra is a Lie algebra. We show that this variety properly contains the variety of Filippov algebras and coincides with the variety of Filippov algebras in the presence of a non-degenerate (skew)symmetric anti-invariant form. We also obtain some structure results on RLT-algebras.
Keywords: RLT-algebra, Filippov algebra, Engel theorem
Mots-clés : multiplication algebra.
@article{SEMR_2014_11_a15,
     author = {A. P. Pozhidaev},
     title = {Reduced {Lie} ternary algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {508--516},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a15/}
}
TY  - JOUR
AU  - A. P. Pozhidaev
TI  - Reduced Lie ternary algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 508
EP  - 516
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a15/
LA  - ru
ID  - SEMR_2014_11_a15
ER  - 
%0 Journal Article
%A A. P. Pozhidaev
%T Reduced Lie ternary algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 508-516
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a15/
%G ru
%F SEMR_2014_11_a15
A. P. Pozhidaev. Reduced Lie ternary algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 508-516. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a15/

[1] V. T. Filippov, “$n$-Lie algebras”, Sib. Math. J., 26:6 (1985), 126–140 | MR | Zbl

[2] Y. Nambu, “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7 (1973), 2405–2412 | DOI | MR | Zbl

[3] A. P. Pozhidaev, “$n$-arnye algebry Maltseva”, Algebra i logika, 40:3 (2001), 309–329 | MR | Zbl

[4] M. Bremner, “Varieties of anticommutative $n$-ary algebras”, J. of Algebra, 191:1 (1997), 76–88 | DOI | MR | Zbl