Algebras of distributions for semi-isolating formulas of a complete theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 408-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class of algebras describing links of binary semi-isolating formulas on the set of all realizations for a family of $1$-types of a complete theory. These algebras include algebras of isolating formulas considered before. We prove that a set of labels for binary semi-isolating formulas on the set of all realizations for a $1$-type $p$ forms a monoid of a special form with a partial order inducing ranks for labels, with set-theoretic operations, and with a composition. We describe the class of these structures. A description of the class of structures relative to families of $1$-types is given.
Keywords: type, complete theory, algebra of binary semi-isolating formulas, join of monoids, deterministic structure.
@article{SEMR_2014_11_a12,
     author = {S. V. Sudoplatov},
     title = {Algebras of distributions for semi-isolating formulas of a complete theory},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {408--433},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a12/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - Algebras of distributions for semi-isolating formulas of a complete theory
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 408
EP  - 433
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a12/
LA  - en
ID  - SEMR_2014_11_a12
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T Algebras of distributions for semi-isolating formulas of a complete theory
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 408-433
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a12/
%G en
%F SEMR_2014_11_a12
S. V. Sudoplatov. Algebras of distributions for semi-isolating formulas of a complete theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 408-433. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a12/

[1] B. S. Baizhanov, S. V. Sudoplatov, V. V. Verbovskiy, “Conditions for non-symmetric relations of semi-isolation”, Siberian Electronic Math. Reports, 9 (2012), 161–184 | MR

[2] C. C. Chang, H. J. Keisler, Model theory, Elsevier, Amsterdam, 1990 | MR

[3] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, v. 1, American Mathematical Society, Providence, 1961 | MR

[4] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, v. 2, American Mathematical Society, Providence, 1967 | MR | Zbl

[5] Yu. L. Ershov, Decidability problems and constructive models, Nauka, M., 1980 (in Russian) | MR

[6] Yu. L. Ershov, E. A. Palyutin, Mathematical logic, Mir, M., 1990 | MR

[7] O. V. Mel'nikov and others, General algebra, v. 1, ed. L. A. Skornyakov, Nauka, M., 1990 (in Russian) | MR

[8] V. A. Artamonov and others, General algebra, v. 2, ed. L. A. Skornyakov, Nauka, M., 1991 (in Russian) | MR

[9] F. Harary, Graph theory, Addison-Wesley, Reading, Massachusetts, 1969 | MR | Zbl

[10] R. Hirsch, I. Hodkinson, Relation algebras by games, Elsevier, Amsterdam, 2002 | MR

[11] K. Ikeda, A. Pillay, A. Tsuboi, “On theories having three countable models”, Math. Logic Quaterly, 44:2 (1998), 161–166 | DOI | MR | Zbl

[12] E. S. Lyapin, Semigroups, American Mathematical Society, Providence, 1974 | MR | Zbl

[13] R. D. Maddux, Relation algebras, Elsevier, Amsterdam, 2006 | MR | Zbl

[14] M. Morley, “Categoricity in power”, Trans. Amer. Math. Soc., 114 (1965), 514–538 | DOI | MR | Zbl

[15] A. Pillay, “Countable models of stable theories”, Proc. Amer. Math. Soc., 89 (1983), 666–672 | DOI | MR | Zbl

[16] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1990 | MR | Zbl

[17] I. V. Shulepov, S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Siberian Electronic Mathematical Reports, 11 (2014), 380–407

[18] http://www.math.nsc.ru/s̃udoplatov/lachlan_eng_03_09_2008.pdf

[19] S. V. Sudoplatov, “Type reduction and powerful types”, Siberian Math. J., 33:1 (1992), 125–133 | DOI | MR | Zbl

[20] S. V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sciences, 169:5 (2010), 680–695 | DOI | MR | Zbl