Algebras of distributions for semi-isolating formulas of a complete theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 408-433

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class of algebras describing links of binary semi-isolating formulas on the set of all realizations for a family of $1$-types of a complete theory. These algebras include algebras of isolating formulas considered before. We prove that a set of labels for binary semi-isolating formulas on the set of all realizations for a $1$-type $p$ forms a monoid of a special form with a partial order inducing ranks for labels, with set-theoretic operations, and with a composition. We describe the class of these structures. A description of the class of structures relative to families of $1$-types is given.
Keywords: type, complete theory, algebra of binary semi-isolating formulas, join of monoids, deterministic structure.
@article{SEMR_2014_11_a12,
     author = {S. V. Sudoplatov},
     title = {Algebras of distributions for semi-isolating formulas of a complete theory},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {408--433},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a12/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - Algebras of distributions for semi-isolating formulas of a complete theory
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 408
EP  - 433
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a12/
LA  - en
ID  - SEMR_2014_11_a12
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T Algebras of distributions for semi-isolating formulas of a complete theory
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 408-433
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a12/
%G en
%F SEMR_2014_11_a12
S. V. Sudoplatov. Algebras of distributions for semi-isolating formulas of a complete theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 408-433. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a12/