On unit group of a finite local rings of characteristic $p$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 362-371

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of the unit group of a commutative finite local rings of characteristic $p$ with Jacobson radical $J$ such that ${\dim_F J/J^2=3}$, ${\dim_F J^2/J^3=1}$, ${\dim_F J^3=1}$, $J^4=(0)$ and $F=R/J\cong GF(p^r)$, the finite field of $p^r$ elements.
Keywords: local rings, finite rings, unit group of a ring.
@article{SEMR_2014_11_a10,
     author = {E. V. Zhuravlev},
     title = {On unit group of a finite local rings of characteristic $p$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {362--371},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a10/}
}
TY  - JOUR
AU  - E. V. Zhuravlev
TI  - On unit group of a finite local rings of characteristic $p$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 362
EP  - 371
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a10/
LA  - ru
ID  - SEMR_2014_11_a10
ER  - 
%0 Journal Article
%A E. V. Zhuravlev
%T On unit group of a finite local rings of characteristic $p$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 362-371
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a10/
%G ru
%F SEMR_2014_11_a10
E. V. Zhuravlev. On unit group of a finite local rings of characteristic $p$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 362-371. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a10/