On the commutation graph of cyclic TI-subgroup in an ortogonal group~$G$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 180-199
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the commutation graph $\Gamma _G(A)$ of cyclic TI-subgroup A of order 4 in a finite group G with quasisimple generalized Fitting subgroup $F^*(G)$. It is proved that, if $F^*(G)$ is a ortogonal group, then the graph $\Gamma _G(A)$ is edge-regular but not coedge-regular graph.
Keywords:
finite group, cyclic TI-subgroup, commutation graph.
@article{SEMR_2013_10_a6,
author = {N. D. Zyulyarkina},
title = {On the commutation graph of cyclic {TI-subgroup} in an ortogonal group~$G$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {180--199},
publisher = {mathdoc},
volume = {10},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a6/}
}
N. D. Zyulyarkina. On the commutation graph of cyclic TI-subgroup in an ortogonal group~$G$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 180-199. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a6/