On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 649-655.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider domains of convergences of series of homogeneous harmonic polynomials. It is given asserions, which is analogous of theorems about domains of convergence of power series in $\mathbb C^n$.
Mots-clés : harmonic polynomial, domain of convergence.
@article{SEMR_2013_10_a59,
     author = {A. M. Kytmanov and O. V. Hodos},
     title = {On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {649--655},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/}
}
TY  - JOUR
AU  - A. M. Kytmanov
AU  - O. V. Hodos
TI  - On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 649
EP  - 655
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/
LA  - ru
ID  - SEMR_2013_10_a59
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%A O. V. Hodos
%T On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 649-655
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/
%G ru
%F SEMR_2013_10_a59
A. M. Kytmanov; O. V. Hodos. On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 649-655. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/

[1] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[2] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 1, Nauka, M., 1976 | MR

[3] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[4] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[5] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[6] O. V. Khodos, “Ob analoge formuly Koshi–Adamara dlya garmonicheskikh v share funktsii”, Zhurnal SFU. Matematika i fizika, 2:4 (2009), 517–520