On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 649-655
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider domains of convergences of series of homogeneous harmonic polynomials. It is given asserions, which is analogous of theorems about domains of convergence of power series in $\mathbb C^n$.
Mots-clés :
harmonic polynomial, domain of convergence.
@article{SEMR_2013_10_a59,
author = {A. M. Kytmanov and O. V. Hodos},
title = {On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {649--655},
year = {2013},
volume = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/}
}
TY - JOUR AU - A. M. Kytmanov AU - O. V. Hodos TI - On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 649 EP - 655 VL - 10 UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/ LA - ru ID - SEMR_2013_10_a59 ER -
A. M. Kytmanov; O. V. Hodos. On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 649-655. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/
[1] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR
[2] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 1, Nauka, M., 1976 | MR
[3] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl
[4] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl
[5] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR
[6] O. V. Khodos, “Ob analoge formuly Koshi–Adamara dlya garmonicheskikh v share funktsii”, Zhurnal SFU. Matematika i fizika, 2:4 (2009), 517–520