On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 649-655 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider domains of convergences of series of homogeneous harmonic polynomials. It is given asserions, which is analogous of theorems about domains of convergence of power series in $\mathbb C^n$.
Mots-clés : harmonic polynomial, domain of convergence.
@article{SEMR_2013_10_a59,
     author = {A. M. Kytmanov and O. V. Hodos},
     title = {On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {649--655},
     year = {2013},
     volume = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/}
}
TY  - JOUR
AU  - A. M. Kytmanov
AU  - O. V. Hodos
TI  - On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 649
EP  - 655
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/
LA  - ru
ID  - SEMR_2013_10_a59
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%A O. V. Hodos
%T On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 649-655
%V 10
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/
%G ru
%F SEMR_2013_10_a59
A. M. Kytmanov; O. V. Hodos. On convergence of series of homogeneous harmonic polynomials in $\mathbb R^n$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 649-655. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a59/

[1] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[2] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 1, Nauka, M., 1976 | MR

[3] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl

[4] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[5] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[6] O. V. Khodos, “Ob analoge formuly Koshi–Adamara dlya garmonicheskikh v share funktsii”, Zhurnal SFU. Matematika i fizika, 2:4 (2009), 517–520