On some special polynomials and functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 205-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

A full system of homogeneous harmonic polynomials on $n$ variables is constructed. It is orthogonal in two spaces. On the base of these polynomials a notion of $G$-functions is introduced. Connections of $G$-functions with Legendre polynomials and Chebyshev polynomials are obtained and a Rodrigues formula is proved.
Keywords: harmonic polynomials, Legendre and Chebyshev polynomials, Gegenbauer's polynomials
Mots-clés : Rodrigues formula.
@article{SEMR_2013_10_a58,
     author = {V. V. Karachik},
     title = {On some special polynomials and functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {205--226},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a58/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - On some special polynomials and functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 205
EP  - 226
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a58/
LA  - ru
ID  - SEMR_2013_10_a58
ER  - 
%0 Journal Article
%A V. V. Karachik
%T On some special polynomials and functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 205-226
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a58/
%G ru
%F SEMR_2013_10_a58
V. V. Karachik. On some special polynomials and functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 205-226. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a58/

[1] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Fizmatgiz, M., 1957

[2] A. B. Otis, M. P. Barnett, “Surface Harmonic Expantions of Products of Cartesian Coordinates”, Tehnical Notes, 26, Cooperative Computing Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., USA, 1963

[3] A. B. Otis, M. P. Barnett, “Surface Harmonic of Products of Cartesian Coordinates”, Mathematics of Computation, 18:88 (1964) | DOI | MR | Zbl

[4] P. P. Teodorescu, “Asupra polinoamelor armonice si biarmonice”, Studia Univer. Babes-Bolyai, ser. mathem.-physica, 1, RPR Cluj, 1963 | MR | Zbl

[5] B. A. Bondarenko, Poligarmonicheskie polinomy, Fan, Tashkent, 1968 | MR | Zbl

[6] A. V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | MR

[7] V. V. Karachik, “Polinomialnye resheniya differentsialnykh uravnenii v chastnykh proizvodnykh s postoyannymi koeffitsientami, I”, Vestnik YuUrGU, Seriya “Matematika. Mekhanika. Fizika”, 32(249):5 (2011), 27–38

[8] V. V. Karachik, “Normalized system of functions with respect to the Laplace operator and its applications”, Journal of Mathematical Analysis and Applications, 287:2 (2003), 577–592 | DOI | MR | Zbl

[9] V. V. Karachik, “On one set of orthogonal harmonic polynomials”, Proceedings of American Mathematical Society, 126:12 (1998), 3513–3519 | DOI | MR | Zbl

[10] V. V. Karachik, “On some special polynomials”, Proceedings of American Mathematical Society, 132:4 (2004), 1049–1058 | DOI | MR | Zbl

[11] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[12] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966 | MR

[13] V. V. Karachik, “Postroenie polinomialnykh reshenii nekotorykh zadach dlya uravneniya Puassona”, ZhVMiMF, 51:9 (2011), 1674–1694 | MR

[14] V. V. Karachik, “Ob odnom predstavlenii analiticheskikh funktsii garmonicheskimi”, Matematicheskie trudy, 10:2 (2007), 142–162 | MR | Zbl

[15] E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960 | MR | Zbl