On the stability of a two-sided sweep algorithm
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 504-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-sided sweep algorithm is proposed for numerical solution of systems of linear equations with nonsingular tridiagonal $n\times n$-matrices, whose arithmetical cost is about $18n$ operations. We prove the componentwise backward stability of the algorithm.
Mots-clés : tridiagonal matrix
Keywords: two-sided sweep algorithm, componentwise backward error.
@article{SEMR_2013_10_a57,
     author = {Alexander N. Malyshev},
     title = {On the stability of a two-sided sweep algorithm},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {504--516},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a57/}
}
TY  - JOUR
AU  - Alexander N. Malyshev
TI  - On the stability of a two-sided sweep algorithm
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 504
EP  - 516
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a57/
LA  - ru
ID  - SEMR_2013_10_a57
ER  - 
%0 Journal Article
%A Alexander N. Malyshev
%T On the stability of a two-sided sweep algorithm
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 504-516
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a57/
%G ru
%F SEMR_2013_10_a57
Alexander N. Malyshev. On the stability of a two-sided sweep algorithm. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 504-516. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a57/

[1] I. Babuška, “Numerical stability in problems of linear algebra”, SIAM Journal on Numerical Analysis, 9:1 (1972), 53–77 | DOI | MR | Zbl

[2] I. Bar-On, M. Leoncini, “Stable solution of tridiagonal systems”, Numerical Algorithms, 18 (1998), 361–388 | DOI | MR | Zbl

[3] I. Bar-On, M. Leoncini, “Reliable solution of tridiagonal systems of linear equations”, SIAM Journal on Numerical Analysis, 38:4 (2001), 1134–1153 | DOI | MR

[4] Dzh. Demmel, Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Per. s angl., Mir, M., 2001

[5] N. Higham, Accuracy and stability of numerical algorithms, SIAM, Philadephia, PA, 2002 | MR

[6] S. I. Fadeev, “Algoritm universalnoi progonki”, Metody splain-funktsii. Vychislitelnye sistemy, 75, 1979, 68–79 | MR