Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a57, author = {Alexander N. Malyshev}, title = {On the stability of a two-sided sweep algorithm}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {504--516}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a57/} }
Alexander N. Malyshev. On the stability of a two-sided sweep algorithm. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 504-516. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a57/
[1] I. Babuška, “Numerical stability in problems of linear algebra”, SIAM Journal on Numerical Analysis, 9:1 (1972), 53–77 | DOI | MR | Zbl
[2] I. Bar-On, M. Leoncini, “Stable solution of tridiagonal systems”, Numerical Algorithms, 18 (1998), 361–388 | DOI | MR | Zbl
[3] I. Bar-On, M. Leoncini, “Reliable solution of tridiagonal systems of linear equations”, SIAM Journal on Numerical Analysis, 38:4 (2001), 1134–1153 | DOI | MR
[4] Dzh. Demmel, Vychislitelnaya lineinaya algebra. Teoriya i prilozheniya, Per. s angl., Mir, M., 2001
[5] N. Higham, Accuracy and stability of numerical algorithms, SIAM, Philadephia, PA, 2002 | MR
[6] S. I. Fadeev, “Algoritm universalnoi progonki”, Metody splain-funktsii. Vychislitelnye sistemy, 75, 1979, 68–79 | MR