Formulas in inverse problems for evolution equations and representations of solutions to Cauchy problems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 705-718.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study some questions of connection of formulas for solutions to inverse problems for evolution equations and classical formulas for Cauchy problems.
Keywords: inverse problems, Cauchy problem.
Mots-clés : evolution equations
@article{SEMR_2013_10_a54,
     author = {N. B. Ayupova},
     title = {Formulas in inverse problems for evolution equations and representations of solutions to {Cauchy} problems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {705--718},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a54/}
}
TY  - JOUR
AU  - N. B. Ayupova
TI  - Formulas in inverse problems for evolution equations and representations of solutions to Cauchy problems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 705
EP  - 718
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a54/
LA  - ru
ID  - SEMR_2013_10_a54
ER  - 
%0 Journal Article
%A N. B. Ayupova
%T Formulas in inverse problems for evolution equations and representations of solutions to Cauchy problems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 705-718
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a54/
%G ru
%F SEMR_2013_10_a54
N. B. Ayupova. Formulas in inverse problems for evolution equations and representations of solutions to Cauchy problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 705-718. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a54/

[1] Yu. E. Anikonov, “Formuly v mnogomernoi obratnoi zadache dlya evolyutsionnogo uravneniya”, DAN RAN, 334 (1994), 263–265 | MR

[2] Yu. E. Anikonov, Formulas in Inverse and Ill-Posed Problems, VSP, Utrecht, 1997 | MR

[3] Yu. E. Anikonov, M. P. Vishnevskii, “Formuly v obratnykh zadachakh dlya evolyutsionnogo uravneniya”, Sibirskii matematicheskii zhurnal, 37 (1996), 963–976 | MR | Zbl

[4] N. B. Ayupova, V. P. Golubyatnikov, “O formalnykh resheniyakh mnogomernykh evolyutsionnykh uravnenii”, Matematicheskie trudy, 1 (1998), 3–23 | MR | Zbl

[5] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., New York, 2000 | MR | Zbl

[6] A. Prilepko, S. Piskarev, S.-Y. Shaw, “On approximation of inverse problem for abstract parabolic differential equations in banach spaces”, Journal of Inverse and Ill-Posed Problems, 15 (2007), 831–851 | MR | Zbl

[7] Yu. E. Anikonov, Li Shumin, “An inverse problem for a system of evolution equations”, Journal of Inverse and Ill-posed Problems, 19 (2011), 1–12 | MR

[8] D. G. Orlovskii, “K zadache opredeleniya parametra evolyutsionnogo uravneniya”, Differentsialnye uravneniya, 26 (1990), 1614–1621 | MR

[9] N. B. Ayupova, “O korrektnosti resheniya zadachi upravleniya funktsiei istochnika”, Sibirskii zhurnal industrialnoi matematiki, 9 (2006), 3–11 | MR | Zbl

[10] L. I. Ronkin, Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[11] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl