Classes of generalized functional invariant solutions of wave equation.~I
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 418-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

Proved that formula Smirnov–Sobolev give all real-valued functional invariant solutions of wave equation in space arbitrary dimension. Proved that solution with many phase functions are essential complex-valued. Considered problem finding of amplitude of generalized functional invariant solution for given phase.
Keywords: wave equation, generalized functional invariant solutions.
@article{SEMR_2013_10_a51,
     author = {M. V. Neshchadim},
     title = {Classes of generalized functional invariant solutions of wave {equation.~I}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {418--435},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a51/}
}
TY  - JOUR
AU  - M. V. Neshchadim
TI  - Classes of generalized functional invariant solutions of wave equation.~I
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 418
EP  - 435
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a51/
LA  - ru
ID  - SEMR_2013_10_a51
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%T Classes of generalized functional invariant solutions of wave equation.~I
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 418-435
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a51/
%G ru
%F SEMR_2013_10_a51
M. V. Neshchadim. Classes of generalized functional invariant solutions of wave equation.~I. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 418-435. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a51/

[1] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, v. 2, GTTI, M.–L., 1945, 620 pp.

[2] N. P. Erugin, M. M. Smirnov, “Funktsionalno-invariantnye resheniya differentsialnykh uravnenii”, Diff. uravneniya, 17:5 (1981), 853–865 | MR | Zbl

[3] S. L. Sobolev, “Funktsionalno-invariantnye resheniya volnovogo uravneniya”, Trudy fiz.-mat. inst. im. Steklova V. A., 5, 1934, 259–264

[4] V. I. Smirnov, S. L. Sobolev, “Novyi metod resheniya ploskoi zadachi uprugikh kolebanii”, Tr. Seismol. in-ta AN SSSR, 20, 1932, 37 pp.

[5] V. I. Smirnov, S. L. Sobolev, “O primenenii novogo metoda k izucheniyu uprugikh kolebanii v prostranstve pri nalichii osevoi simmetrii”, Tr. Seismol. in-ta AN SSSR, 29, 1933, 43–51

[6] M. M. Smirnov, “Funktsionalno-invariantnye resheniya volnovogo uravneniya”, Doklady AN SSSR, 67:6 (1949), 977–980 | MR | Zbl

[7] M. M. Smirnov, “Funktsionalno-invariantnye resheniya volnovogo uravneniya”, Uchenye zapiski LGU. Ser. mat. nauk, (135)21 (1950), 127–202 | MR

[8] M. M. Smirnov, “Funktsionalno-invariantnye resheniya uravnenii giperbolo-parabolicheskogo tipa s tremya nezavisimymi peremennymi”, Prikl. mat. mekh., 17:4 (1953), 509–513 | Zbl

[9] M. M. Smirnov, “Funktsionalno-invariantnye resheniya uravneniya 4-go poryadka s dvumya nezavisimymi peremennymi”, Vestnik LGU. Ser. matem., mekh., astr., 2:7 (1956), 122–125 | MR | Zbl

[10] M. M. Smirnov, “Funktsionalno-invariantnye resheniya i needinstvennost resheniya zadachi Darbu dlya vyrozhdayuschikhsya giperbolicheskikh uravnenii”, Diff. uravneniya, 12:5 (1976), 937–939 | MR | Zbl

[11] L. M. Galonen, “O nekotorom uproschenii metoda otyskaniya funktsionalno-invariantnykh reshenii volnovogo uravneniya”, Uchenye zapiski fiz.-matem. fak. Rostovskogo gos. un-ta, 32:4 (1955), 173–178 | MR

[12] L. M. Galonen, “O funktsionalno-invariantnye resheniyakh volnovogo uravneniya v $n$-mernoi oblasti”, Izv. AN SSSR. Ser. matem., 21:1 (1957), 53–72 | MR | Zbl

[13] N. P. Erugin, “O funktsionalno-invariantnye resheniyakh”, Uchenye zapiski LGU. Ser. mat. nauk, 15 (1948), 101–134

[14] N. P. Erugin, “Funktsionalno-invariantnye resheniya uravnenii vtorogo poryadka s dvumya nezavisimymi peremennymi”, Uchenye zapiski LGU. Ser. mat. nauk, 16 (1949), 142–166

[15] O. F. Menshikh, “O beguschikh volnakh dlya nelineinykh uravnenii s chastnymi proizvodnymi vtorogo poryadka”, Izv. vuzov. Matematika, 4 (1974), 84–92

[16] O. F. Menshikh, “Funktsionalno-invariantnye resheniya odnogo klassa uravnenii s chastnymi proizvodnymi vtorogo poryadka”, Doklady AN SSSR, 205:1 (1972), 30–32 | MR | Zbl

[17] O. F. Menshikh, “O funktsionalno-invariantnykh resheniyakh kvazilineinykh uravnenii s chastnymi proizvodnymi vtorogo poryadka”, Diff. uravneniya, 11:3 (1975), 531–540

[18] O. F. Menshikh, “O gruppovykh svoistvakh nelineinykh differentsialnykh uravnenii v chastnykh proizvodnykh, vse resheniya kotorykh yavlyayutsya funktsionalno-invariantnymi”, Vestnik SamGU. Estestvennonauchnaya seriya, 4(34) (2004), 20–30 | MR

[19] M. S. Shneerson, “Uravneniya Maksvella i funktsionalno-invariantnye resheniya volnovogo uravneniya”, Diff. uravneniya, 4:4 (1968), 743–758 | MR | Zbl

[20] A. P. Kiselev, V. V. Perel, “Highly localized solutions of the wave equation”, J. Math. Phys., 41:4 (2000), 1934–1955 | DOI | MR | Zbl

[21] G. Beitmen, Matematicheskaya teoriya rasprostraneniya elektromagnitnykh voln, Fizmatlit, M., 1958

[22] F. G. Friedlander, “Simple progressing solutions of the wave equation”, Proc. Cambridge Phil. Soc., 43:3 (1947), 360–373 | DOI | MR | Zbl

[23] A. P. Kiselev, “Generalisation of Bateman–Hillion progressive wave and Bessel–Gauss pulses solutions of the wave equation via a separation of variables”, J. Phys. A. Math. Gen., 36:23 (2003), L345–L349 | DOI | MR | Zbl

[24] V. Volterra, “Sur les vibrations des corps elastiques isotopes”, Acta. Math., 18 (1894), 161–332 | DOI | MR

[25] A. P. Kiselev, “Otnositelno neiskazhayuschiesya volny. Novye primery”, Zapiski nauchnykh seminarov POMI, 275, 2001, 100–103 | MR | Zbl

[26] A. P. Kiselev, “Otnositelno neiskazhennye tsilindricheskie volny, zavisyaschie ot trekh prostranstvennykh peremennykh”, Matemat. zametki, 79:4 (2006), 635–636 | DOI | MR | Zbl

[27] A. P. Kiselev, M. V. Perel, “Otnositelno neiskazhayuschiesya volny dlya $m$-mernogo volnovogo uravneniya”, Dif. uravneniya, 38:8 (2002), 1128–1129 | MR | Zbl

[28] A. P. Kiselev, A. B. Plachenov, “Tochnye resheniya $m$-mernogo volnovogo uravneniya iz paraksialnykh. Dalneishee obobschenie resheniya Beitmena”, Zap. nauchn. sem. POMI, 393, 2011, 167–177 | MR

[29] M. V. Neschadim, “Funktsionalno-invariantnye resheniya uravneniya Monzha–Ampera”, Vestnik Novosibirskogo gosudarstvennogo universiteta, 2:1 (2002), 53–57 | Zbl

[30] M. V. Neschadim, “Obratnaya zadacha teorii sovmestnosti i funktsionalno-invariantnye resheniya volnovogo uravneniya v dvumernom prostranstve”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 40(299):14 (2012), 87–95

[31] Yu. E. Anikonov, M. V. Neschadim, “Ob analiticheskikh metodakh v teorii obratnykh zadach matematicheskoi fiziki”, Sibirskie elektronnye matematicheskie izvestiya, 7 (2010), 11–61 http://semr.math.nsc.ru | MR | Zbl

[32] Yu. E. Anikonov, M. V. Neschadim, “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii, I”, Sibirskii zhurnal industrialnoi matematiki, 14:1 (2011), 27–39 | MR | Zbl

[33] Yu. E. Anikonov, M. V. Neschadim, “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii, II”, Sibirskii zhurnal industrialnoi matematiki, 14:2 (2011), 28–33 | MR | Zbl

[34] Yu. E. Anikonov, M. V. Neschadim, “Predstavleniya dlya reshenii i koeffitsientov differentsialnykh uravnenii 2-go poryadka”, Sibirskii zhurnal industrialnoi matematiki, 15:4 (2012), 17–23

[35] Zh. Pommare, Sistemy uravnenii s chastnymi proizvodnymi i psevdogruppy Li, Mir, M., 1983 | MR | Zbl

[36] A. F. Sidorov, V. P. Shapeev, N. N. Yanenko, Metod differentsialnykh svyazei i ego prilozhenie v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR

[37] S. P. Finikov, Metod vneshnikh form Kartana v differentsialnoi geometrii, GIITL, M.–L., 1948