Special case of the Cahn-Hilliard Equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 324-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

A qualitative behaviour of the Cauchy problem solution for the Cahn–Hilliard kind equation is analyzed. The sufficient condition of the global solution existence and its collapse for a finite time for the periodic function has been formulated. The examples of the stationary, self-similar and collapsing solutions are constructed.
Keywords: Cauchy problem, Lyapunov functional, similarity solutions.
Mots-clés : Cahn–Hilliard Equation
@article{SEMR_2013_10_a48,
     author = {O. A. Frolovskaya and O. V. Admaev and V. V. Pukhnachev},
     title = {Special case of the {Cahn-Hilliard} {Equation}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {324--334},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a48/}
}
TY  - JOUR
AU  - O. A. Frolovskaya
AU  - O. V. Admaev
AU  - V. V. Pukhnachev
TI  - Special case of the Cahn-Hilliard Equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 324
EP  - 334
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a48/
LA  - en
ID  - SEMR_2013_10_a48
ER  - 
%0 Journal Article
%A O. A. Frolovskaya
%A O. V. Admaev
%A V. V. Pukhnachev
%T Special case of the Cahn-Hilliard Equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 324-334
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a48/
%G en
%F SEMR_2013_10_a48
O. A. Frolovskaya; O. V. Admaev; V. V. Pukhnachev. Special case of the Cahn-Hilliard Equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 324-334. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a48/

[1] V. V. Pukhnachov, “Manifestation of an anomalous thermocapillary effect in a thin liquid layer”, Gidrodinamika i teploobmen techemii zhidkosti so svobodnoi poverhnost'yu, ITP SB RAS, Novosibirsk, 1985, 119–127 (in Russian)

[2] T. Boeck, A. Nepomnyashchy, I. Simanovskii, A. Golovin, L. Braverman, A. Thess, “Three-dimensional convection in a two-layer system with anomalous thermocapillary effect”, Physics of Fluids, 14 (2002), 3899–3911 | MR

[3] J. C. Legros, M. C. Limbourg-Fontaine, G. Petre, “Influence of a surface tension minimum as a function of temperarute on the Marangoni convection”, Acta Astronautica, 11 (1984), 143–147

[4] Y. Kuramoto, “Phase dynamics of weakly unstable periodic structures”, Progress of Theoretical Physics, 71 (1984), 1182–1196 | MR | Zbl

[5] T. Kawahara, S. Toh, “An approximatate equation for nonlinear cross-field instability”, Phys. Letters A, 113 (1985), 21–24

[6] A. A. Nepomnyashchy, A. A. Golovin, V. Gubareva, V. Panfilov, “Global feedback control of a long-wave morphological instability”, Physica D, 199 (2004), 61–81 | MR | Zbl

[7] G. I. Sivashinsky, “On cellular instability in the solidification of a dilute binary alloy”, Physica D, 8 (1983), 243–248 | MR

[8] V. K. Kalantarov, “Global behavior of the solutions of some fourth order nonlinear equations”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 163, 1987, 66–75 (in Russian) | MR | Zbl

[9] C. M. Elliott, Z. Songmu, “On the Chan–Hilliard equation”, Arch. Rat. Mech. Anal., 96 (1986), 339–357 | MR | Zbl

[10] A. Novick-Cohen, “On Chan–Hilliard type equations”, Nonlin. Anal. TMA, 15 (1990), 797–814 | MR | Zbl

[11] J. D. Evans, V. A. Galaktionov, J. F. Williams, “Blow-up and global asymptotics of the limit unstable Chan–Hilliarg equation”, SIAM J. on Mathematical Analysis, 38 (2006), 64–102 | MR | Zbl

[12] A. J. Bernoff, A. L. Bertozzi, “Singularities in a modified Kuramoto–Sivashinsky equation describing interface motion for phase transition”, Physica D, 85 (1995), 375–404 | MR | Zbl

[13] V. V. Pukhnachov, “Long wave instability of viscous liquid free surface due to anomalous Marangoni effect”, Free boundaries in viscous flows, IMA Series, 61, eds. R. A. Brown, S. H. Davis, 1994, 67–77 | MR | Zbl

[14] O. V. Admaev, V. V. Pukhnachev, Self-similar solutions of the equation $u_t+\Delta^2 u+\Delta(u^2)=0$, Preprint No 3, ICM SB RAS, Krasnoyarsk, 1997, 15 pp. (in Russian)

[15] C. I. Christov, “A complete orthonormal system of functions in $L^2(-\infty, \infty)$ space”, SIAM J. Appl. Math., 42 (1982), 1337–1344 | MR | Zbl