Special case of the Cahn-Hilliard Equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 324-334

Voir la notice de l'article provenant de la source Math-Net.Ru

A qualitative behaviour of the Cauchy problem solution for the Cahn–Hilliard kind equation is analyzed. The sufficient condition of the global solution existence and its collapse for a finite time for the periodic function has been formulated. The examples of the stationary, self-similar and collapsing solutions are constructed.
Keywords: Cauchy problem, Lyapunov functional, similarity solutions.
Mots-clés : Cahn–Hilliard Equation
@article{SEMR_2013_10_a48,
     author = {O. A. Frolovskaya and O. V. Admaev and V. V. Pukhnachev},
     title = {Special case of the {Cahn-Hilliard} {Equation}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {324--334},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a48/}
}
TY  - JOUR
AU  - O. A. Frolovskaya
AU  - O. V. Admaev
AU  - V. V. Pukhnachev
TI  - Special case of the Cahn-Hilliard Equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 324
EP  - 334
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a48/
LA  - en
ID  - SEMR_2013_10_a48
ER  - 
%0 Journal Article
%A O. A. Frolovskaya
%A O. V. Admaev
%A V. V. Pukhnachev
%T Special case of the Cahn-Hilliard Equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 324-334
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a48/
%G en
%F SEMR_2013_10_a48
O. A. Frolovskaya; O. V. Admaev; V. V. Pukhnachev. Special case of the Cahn-Hilliard Equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 324-334. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a48/