Asymptotic properties of solutions of nonlinear Sharpe-Lotka model in the most general assumptions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 227-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the papers [6, 7, 8] based on Sharpe-Lotka model [1, 2] was constructed and studied nonlinear integral model of dynamics of isolated populations with the self-limitation and the finite lifetime of individuals. In 2002 has been proved that the solution of this model has the limit in the case when the equation $\lambda(x) = \beta$ has no more than one root. In this paper we prove that the limit of the solution of the model exists independently of the number of roots of the equation $\lambda(x) = \beta$. In addition, using the results of [9], greatly weakened conditions on model parameters. Furthermore, the theorem on the continuous dependence on the initial data and the stability theorem was proved.
Keywords: Sharpe-Lotka model, nonlinear integral equations, renewal equation.
@article{SEMR_2013_10_a45,
     author = {A. N. Pichugina and B. Yu. Pichugin},
     title = {Asymptotic properties of solutions of nonlinear {Sharpe-Lotka} model in the most general assumptions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {227--240},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a45/}
}
TY  - JOUR
AU  - A. N. Pichugina
AU  - B. Yu. Pichugin
TI  - Asymptotic properties of solutions of nonlinear Sharpe-Lotka model in the most general assumptions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 227
EP  - 240
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a45/
LA  - ru
ID  - SEMR_2013_10_a45
ER  - 
%0 Journal Article
%A A. N. Pichugina
%A B. Yu. Pichugin
%T Asymptotic properties of solutions of nonlinear Sharpe-Lotka model in the most general assumptions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 227-240
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a45/
%G ru
%F SEMR_2013_10_a45
A. N. Pichugina; B. Yu. Pichugin. Asymptotic properties of solutions of nonlinear Sharpe-Lotka model in the most general assumptions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 227-240. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a45/

[1] Sharpe F. R., Lotka A. J., “A problem in age-distribution”, Philosophical Magazine, ser. 6, 21 (1911), 435–438 | DOI

[2] Lotka A. J., “The stability of the normal age distribution”, Proceedings of the National Academy of Sciences (USA), 8 (1922), 339–345 PMC1085180 | DOI

[3] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[4] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR

[5] Poluektov R. A., Pykh Yu. A., Shvytov I. A., Dinamicheskie modeli ekologicheskikh sistem, Gidrometeoizdat, L., 1980

[6] N. V. Pertsev, “Issledovanie reshenii odnoi sistemy integrodifferentsialnykh uravnenii, voznikayuschei v modelyakh dinamiki populyatsii”, Vestnik Omskogo Universiteta, 1 (1996), 24–26

[7] N. V. Pertsev, “Issledovanie reshenii integralnoi modeli Lotki–Volterra”, Sib. zhurn. industr. matem., 2:4 (1999), 153–167 | MR | Zbl

[8] A. N. Pichugina, “Povedenie reshenii nelineinoi modeli Sharpa–Lotki”, Sib. zhurn. industr. matem., 5:3 (2002), 146–154 | MR | Zbl

[9] N. V. Pertsev, A. N. Pichugina, B. Yu. Pichugin, “Povedenie reshenii dissipativnoi integralnoi modeli Lotki–Volterra”, Sib. zhurn. industr. matem., 2:14 (2003), 95–106 | MR | Zbl