On some bondary-value problems for the third-order linear equations of the composite type
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 150-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we study some boundary-value problems for a class of third-order composite type equations with Chapligin operator in the main part. We prove the theorems of the existence and uniqueness of classical solution for considered problems. The proof is based on an energy inequality and Fredgolm type integral equations.
Keywords: Boundary-value problem, Laplace operator, Green function, third-order PDE, energy integrals, Dirichlet problem, integral equations.
Mots-clés : composite type equation
@article{SEMR_2013_10_a44,
     author = {O. S. Zikirov},
     title = {On some bondary-value problems for the third-order linear equations of the composite type},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {150--169},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a44/}
}
TY  - JOUR
AU  - O. S. Zikirov
TI  - On some bondary-value problems for the third-order linear equations of the composite type
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 150
EP  - 169
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a44/
LA  - ru
ID  - SEMR_2013_10_a44
ER  - 
%0 Journal Article
%A O. S. Zikirov
%T On some bondary-value problems for the third-order linear equations of the composite type
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 150-169
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a44/
%G ru
%F SEMR_2013_10_a44
O. S. Zikirov. On some bondary-value problems for the third-order linear equations of the composite type. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 150-169. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a44/

[1] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | Zbl

[2] A. B. Vasileva, A. N. Tikhonov, Integralnye uravneniya, Izd. MGU, M., 1989 | Zbl

[3] V. N. Vragov, “Ob odnom uravnenii smeshanno-sostavnogo tipa”, Differentsialnye uravneniya, 9:1 (1973), 169–171 | MR | Zbl

[4] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR

[5] E. A. Guseinov, A. S. Ilinskii, “Integralnye uravneniya I roda s logarifmicheskoi osobennosti v yadre i ikh primenenie v zadachakh difraktsii na tonkikh ekranakh”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 27:7 (1987), 1050–1057 | MR

[6] T. D. Dzhuraev, Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, Izd. «Fan», Tashkent, 1979 | MR

[7] T. D. Dzhuraev, “Ob edinstvennosti i suschestvovanii reshenii nekotorykh kraevykh zadach dlya uravnenii sostavnogo tipa”, Izvestiya AN UzSSR. Seriya fiziko-matematicheskikh nauk, 3 (1967), 10–16 | MR

[8] T. D. Dzhuraev, “Ob edinstvennosti resheniya nekotorykh kraevykh zadach dlya odnogo klassa uravnenii sostavnogo tipa”, Izvestiya AN UzSSR. Seriya fiziko-matematicheskikh nauk, 4 (1967), 3–5 | MR | Zbl

[9] T. D. Dzhuraev, A. Sopuev, M. Mamazhanov, Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, Izd. «Fan», Tashkent, 1986 | MR | Zbl

[10] V. I. Dmitriev, E. V. Zakharov, Integralnye uravneniya v kraevykh zadachakh elektrodinamiki, Izd-vo MGU, M., 1987 | MR

[11] A. I. Kozhanov, “O kraevykh zadachakh dlya nekotorykh klassov uravnenii vysokogo poryadka, nerazreshennykh otnositelno starshei proizvodnoi”, Sib. mat. zhurn., 35:2 (1994), 359–376 | MR | Zbl

[12] A. I. Kozhanov, “Regulyarnye resheniya nekotorykh vyrozhdayuschikhsya uravnenii sobolevskogo tipa”, Dokl. RAN, 363:4 (1998), 447–449 | MR | Zbl

[13] A. I. Kozhanov, Kraevye zadachi dlya uravnenii matematicheskoi fiziki nechetnogo poryadka, NGU, Novosibirsk, 1990 | MR

[14] A. I. Kozhanov, Composite Type Equation and Inverse Problem, VSP, Utrecht, the Netherlands, 1999 | MR | Zbl

[15] V. I. Korzyuk, O. A. Konopelko, E. S. Cheb, “Granichnye zadachi dlya uravnenii chetvertogo poryadka giperbolicheskogo i sostavnogo tipov”, Sovremennaya matematika. Fundamentalnaya napravleniya, 36, 2010, 87–111 | MR

[16] I. K. Lifanov, “K issledovaniyu kharakteristicheskogo integralnogo uravneniya pervogo roda s logarifmicheskoi osobennostyu”, Differentsialnye uravneniya, 42:4 (2006), 556–559 | MR | Zbl

[17] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[18] A. M. Nakhushev, Zadachi so smesheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006 | Zbl

[19] S. G. Pyatkov, O razreshimosti nekotorykh klassov uravnenii smeshanno-sostavnogo tipa tretego poryadka, Preprint No 8, Institut matematiki SO AN SSSR, Novosibirsk, 1980, 22 pp.

[20] M. S. Salakhitdinov, Uravneniya smeshanno-sostavnogo tipa, Izd-vo «Fan», Tashkent, 1974 | MR

[21] T. D. Dzhuraev, O. S. Zikirov, “Nelokalnye kraevye zadachi dlya odnogo klassa uravnenii tretego poryadka sostavnogo tipa”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd. IM SO RAN, Novosibirsk, 2007, 137–149

[22] O. S. Zikirov, “A non-local boundary value problem for third-order linear partial differential equation of composite type”, Mathematical Modelling and Analysis, 14:3 (2009), 407–421 | DOI | MR | Zbl