On bifurcations of stratified shear flows
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 65-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the non-linear problem on the pairs of horizontal weakly-stratified shear flows which posses predicted fluxes of mass, momentum and energy. Using the methods of the branching theory, we reduce this problem to an equivalent system of implicit algebraic equations. Analysis of the branching system yields necessary and sufficient conditions for bifurcation of conjugate flows. As an example, we show numerically that these conditions are satisfied for a basic continuously stratified flow with a density profile being close to the two-layer stratification.
Keywords: weakly-stratified fluid, conjugate flows, internal waves, branching equations.
@article{SEMR_2013_10_a42,
     author = {A. Yu. Kazakov},
     title = {On bifurcations of stratified shear flows},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {65--78},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a42/}
}
TY  - JOUR
AU  - A. Yu. Kazakov
TI  - On bifurcations of stratified shear flows
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 65
EP  - 78
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a42/
LA  - ru
ID  - SEMR_2013_10_a42
ER  - 
%0 Journal Article
%A A. Yu. Kazakov
%T On bifurcations of stratified shear flows
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 65-78
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a42/
%G ru
%F SEMR_2013_10_a42
A. Yu. Kazakov. On bifurcations of stratified shear flows. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 65-78. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a42/

[1] T. B. Benjamin, “Unified theory of conjugate flows”, Philos. Trans. Roy. Soc., London A, 269 (1971), 587–643 | DOI | MR | Zbl

[2] C. Amick, R. E. L. Turner, “A global theory of internal solitary waves in two-fluid system”, Trans. Amer. Math. Soc., 298 (1986), 431–484 | DOI | MR | Zbl

[3] Makarenko N. I., “Sopryazhennye techeniya i plavnye bory v slabostratifitsirovannoi zhidkosti”, PMTF, 40:2 (1999), 69–78 | MR | Zbl

[4] N. I. Makarenko, J. L. Maltseva, A. Yu. Kazakov, “Conjugate flows and amplitude bounds for internal solitary waves”, Nonlinear Processes in Geophysics, 16:2 (2009), 169–178 | DOI

[5] A. Yu. Kazakov, “Sdvigovye sopryazhennye techeniya slabostratifitsirovannoi zhidkosti”, PMTF, 50:2 (2009), 79–88 | MR

[6] C.-S. Yih, Stratified flows, Academic Press, New York, 1980 | MR

[7] K. N. Fedorov, Tonkaya termokhalinnaya struktura vod okeana, Gidrometeoizdat, Leningrad, 1976, 184 pp.

[8] V. G. Osmolovskii, Nelineinaya zadacha Shturma–Liuvillya, Ucheb. posobie, SPbGU, Sankt-Peterburg, 2003, 230 pp.

[9] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, Nauka, M., 1969, 529 pp. | MR

[10] V. Krauss, Vnutrennie volny, Gidrometeoizdat, Leningrad, 1968, 272 pp.

[11] N. I. Makarenko, “Smooth bore in two-layer fluid”, Intern. Ser. Numer. Math., 106 (1992), 195–204 | MR | Zbl

[12] Zh. L. Maltseva, “Ob odnom tipe uedinennykh vnutrennikh voln v dvukhsloinoi zhidkosti”, PMTF, 40:5 (1999), 55–61 | MR