Boundary value problems for differential equations of fractional order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 41-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider boundary value problems for differential equations of fractional order. In particular, there are allocated areas in the complex plane, where the problems under consideration have their eigenvalues.
Keywords: function of Mittag–Leffler type, spectrum, eigenvalue, fractional derivative.
@article{SEMR_2013_10_a41,
     author = {T. S. Aleroev},
     title = {Boundary value problems for differential equations of fractional order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {41--55},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a41/}
}
TY  - JOUR
AU  - T. S. Aleroev
TI  - Boundary value problems for differential equations of fractional order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 41
EP  - 55
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a41/
LA  - ru
ID  - SEMR_2013_10_a41
ER  - 
%0 Journal Article
%A T. S. Aleroev
%T Boundary value problems for differential equations of fractional order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 41-55
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a41/
%G ru
%F SEMR_2013_10_a41
T. S. Aleroev. Boundary value problems for differential equations of fractional order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 41-55. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a41/

[1] A. V. Agibalova, “O polnote sistemy sobstvennykh i prisoedinennykh funktsii differentsialnykh operatorov poryadkov (2-$\varepsilon$) i (1-$\varepsilon$)”, Ukr. Mat. Vest., 7:2 (2010), 139–153 | MR

[2] A. V. Agibalova, “O polnote sistem kornevykh funktsii differentsialnogo operatora drobnogo poryadka s matrichnymi koeffitsientami”, Matematicheskie zametki, 88:2 (2010), 317–320 | DOI | MR | Zbl

[3] T. S. Aleroev, “Ob odnom klasse operatorov, svyazannykh s differentsialnymi uravneniyami drobnogo poryadka”, Sib. mat. zhurnal., 46:6 (2005), 1201–1207 | MR | Zbl

[4] T. S. Aleroev, “Zadacha Shturma–Liuvillya dlya differentsialnykh uravnenii drobnogo poryadka s drobnymi proizvodnymi v mladshikh chlenakh”, Dif. uravneniya, 18:2 (1982), 341–342 | MR | Zbl

[5] T. S. Aleroev, “O sobstvennykh znacheniyakh odnoi kraevoi zadachi dlya differentsialnogo uravneniya drobnogo poryadka”, Differents. uravneniya, 36:10 (2000), 1422–1423 | MR | Zbl

[6] T. S. Aleroev, Kraevye zadachi dlya differentsialnykh uravnenii s drobnymi proizvodnymi, Diss. ... doktora fiz.-mat. nauk, MGU, 2000

[7] T. Kato, Teoriya vozmuschenii lineinykh operatorov, «Mir», M., 1972 | Zbl

[8] T. S. Aleroev, “Kraevaya zadacha dlya differentsialnogo operatora drobnogo poryadka”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. AN, 1:1 (1994), 6–7

[9] Aleroev A. I., Aleroev T. S., “Ob odnom klasse polozhitelnykh operatorov, porozhdënnykh differentsialnymi vyrazheniyami drobnogo poryadka i kraevymi usloviyami Shturma–Liuvillya”, Izvestiya ChGPI, 1 (2009), 184–188

[10] T. S. Aleroev, H. T. Aleroeva, Ning-Ming Nie, Yi-Fa Tang, “Boundary Value Problems for Differential Equations of Fractional Order”, Mem. Differential Equations Math. Phys., 49 (2010), 21–82 | MR | Zbl

[11] M. M. Dzhrbaschyan, “Kraevaya zadacha dlya differentsialnogo operatora tipa Shturma–Liuvillya drobnogo poryadka”, Izv. Akad. nauk Armyanskoi SSR, seriya “Matematika”, 5 (1970), 71–96

[12] T. S. Aleroev, H. T. Aleroeva, “A problem on the zeros of the Mittag–Leffler function and the spectrum of a fractional-order differential operator”, Electron. J. Qual. Theory Differ. Equ., 25 (2009), 1–18 | MR

[13] A. Yu. Popov, “O kolichestve veschestvennykh sobstvennykh znachenii kraevoi zadachi dlya uravneniya vtorogo poryadka s drobnoi proizvodnoi”, Fundamentalnaya i prikladnaya matematika, 12 (2006), 137–155 | MR

[14] M. M. Dzhrbaschyan, A. B. Nersesyan, “Drobnye proizvodnye i zadacha Koshi dlya diffrenetsialnykh uravnenii drobnogo poryadka”, Izv. Akad. nauk Armyanskoi SSR, seriya «Matematika», 3:1 (1968), 3–29

[15] A. M. Gachaev, Kraevye zadachi dlya differentsialnykh uravnenii drobnogo poryadka, Dissertatsiya kandidata fiz.-mat. nauk, Nalchik, 2005

[16] I. K. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[17] I. K. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve, Nauka, M., 1967 | MR

[18] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[19] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[20] F. Mainardi, “Fractional Relaxation-Oscillation and fractional Diffusion-wave Phenomena”, Chaos, Solitons and Fractals, 7:9 (1996), 1461–1477 | DOI | MR | Zbl

[21] M. M. Malamud, L. L. Oridoroga, “Analog teoremy Birkgofa i polnota rezultatov dlya differentsialnykh uravnenii drobnogo poryadka”, Ross. zhurnal. mat. fiz., 8:3 (2001), 287–308 | MR | Zbl

[22] M. M. Malamud, L. L. Oridoroga, “O nekotorykh voprosakh spektralnoi teorii obyknovennykh differentsialnykh uravnenii drobnogo poryadka”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 9 (1998), 39–47 ; Journal of Mathematical Sciences, 174:4 (2011) | MR | Zbl

[23] M. M. Malamud, “Similarity of Volterra operators and related questions of the theory of differential equations of fractional order”, Trans. Moscow Math. Soc., 55 (1994), 57–122 | MR | Zbl

[24] N. M. Nie, Y. M. Zhao, S. Jimenez, M. Li, Y. F. Tang, L. Vazquez, “Solving two-point boundary value problems of fractional differential equations with Riemann–Liouville derivatives”, J. Syst. Simul., 22:1 (2010), 1–14 http://www.cc.ac.cn/2009research_report/0902.pdf

[25] P. Morse, H. Feshbach, Methods of theoretical physics, v. 2, New-York, 1953 | MR

[26] S. V. Erokhin, “Ob odnom klasse ostsillyatsionnykh matrits”, Matematika, informatika, estestvoznanie v ekonomike i v obschestve, MFYuA, Moskva, 2007, 13–16

[27] Yuan Chengjun, “Multiple positive solutions for $(n-1,1)$-type semipositone conjugate boundary value problems of nonlinear fractional differential equations”, E. J. Qualitative Theory of Diff. Equ., 36 (2010), 1–12 | DOI | MR | Zbl

[28] M. M. Dzhrbaschyan, Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966

[29] T. S. Aleroev, “O polnote sobstvennykh funktsii odnogo differentsialnogo operatora drobnogo poryadka”, Differents. uravneniya, 36:6 (2000), 829–830 | MR | Zbl

[30] T. S. Aleroev, B. I. Aleroev, “O sobstvennykh funktsiyakh odnogo nesamosopryazhennogo operatora”, Differents. uravneniya, 25:11 (1989), 1996–1997 | MR | Zbl

[31] T. S. Aleroev, “K probleme o nulyakh funktsii Mittag–Lefflera i spektre odnogo differentsialnogo operatora drobnogo poryadka”, Differents. uravneniya, 36:9 (2000), 1411–1415 | MR