Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a40, author = {A. L. Gavrilyuk and I. Yu. Mogilnykh}, title = {On the {Godsil--Higman} necessary condition for equitable partitions of association schemes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {699--704}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a40/} }
TY - JOUR AU - A. L. Gavrilyuk AU - I. Yu. Mogilnykh TI - On the Godsil--Higman necessary condition for equitable partitions of association schemes JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 699 EP - 704 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a40/ LA - en ID - SEMR_2013_10_a40 ER -
%0 Journal Article %A A. L. Gavrilyuk %A I. Yu. Mogilnykh %T On the Godsil--Higman necessary condition for equitable partitions of association schemes %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2013 %P 699-704 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a40/ %G en %F SEMR_2013_10_a40
A. L. Gavrilyuk; I. Yu. Mogilnykh. On the Godsil--Higman necessary condition for equitable partitions of association schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 699-704. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a40/
[1] E. Bannai, T. Ito, Algebraic combinatorics, v. I, Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA, 1984 | MR | Zbl
[2] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance regular graphs, Springer-Verl., Berlin, 1989 | MR | Zbl
[3] P. J. Cameron, Permutation groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[4] P. Delsarte, “An algebraic approach to the association schemes of coding theory”, Philips Res. Rep. Suppl., 10 (1973), 1–97 | MR
[5] C. Godsil, R. Gordon, Algebraic graph theory, Springer Science+Business Media, LLC, 2004 | MR
[6] C. Godsil, Association schemes, University of Waterloo, 2010
[7] C. Godsil, “Compact Graphs and Equitable Partitions”, Linear Algebra And Its Applications, 255:1–3 (1997), 259–266 | MR | Zbl
[8] A. A. Makhnev, “On automorphisms of distance-regular graphs”, J. Math. Sci. (New York), 166:6 (2010), 733–742 | MR
[9] Martin W. J., Completely regular subsets, Ph. D. thesis, University of Waterloo, 1992 pp. | MR
[10] F. Vanhove, Incidence geometry from an algebraic graph theory point of view, Ph. D. Thesis, University of Ghent, 2011