On the Godsil--Higman necessary condition for equitable partitions of association schemes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 699-704.

Voir la notice de l'article provenant de la source Math-Net.Ru

In his monograph 'Association schemes', C. Godsil derived a necessary condition for equitable partitions of association schemes and noticed that it could be used to show that certain equitable partitions do not exist. In this short note, we show that, in fact, this condition is not stronger than the well-known Lloyd theorem.
Mots-clés : association scheme, equitable partition.
@article{SEMR_2013_10_a40,
     author = {A. L. Gavrilyuk and I. Yu. Mogilnykh},
     title = {On the {Godsil--Higman} necessary condition for equitable partitions of association schemes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {699--704},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a40/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
AU  - I. Yu. Mogilnykh
TI  - On the Godsil--Higman necessary condition for equitable partitions of association schemes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 699
EP  - 704
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a40/
LA  - en
ID  - SEMR_2013_10_a40
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%A I. Yu. Mogilnykh
%T On the Godsil--Higman necessary condition for equitable partitions of association schemes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 699-704
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a40/
%G en
%F SEMR_2013_10_a40
A. L. Gavrilyuk; I. Yu. Mogilnykh. On the Godsil--Higman necessary condition for equitable partitions of association schemes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 699-704. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a40/

[1] E. Bannai, T. Ito, Algebraic combinatorics, v. I, Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA, 1984 | MR | Zbl

[2] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance regular graphs, Springer-Verl., Berlin, 1989 | MR | Zbl

[3] P. J. Cameron, Permutation groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[4] P. Delsarte, “An algebraic approach to the association schemes of coding theory”, Philips Res. Rep. Suppl., 10 (1973), 1–97 | MR

[5] C. Godsil, R. Gordon, Algebraic graph theory, Springer Science+Business Media, LLC, 2004 | MR

[6] C. Godsil, Association schemes, University of Waterloo, 2010

[7] C. Godsil, “Compact Graphs and Equitable Partitions”, Linear Algebra And Its Applications, 255:1–3 (1997), 259–266 | MR | Zbl

[8] A. A. Makhnev, “On automorphisms of distance-regular graphs”, J. Math. Sci. (New York), 166:6 (2010), 733–742 | MR

[9] Martin W. J., Completely regular subsets, Ph. D. thesis, University of Waterloo, 1992 pp. | MR

[10] F. Vanhove, Incidence geometry from an algebraic graph theory point of view, Ph. D. Thesis, University of Ghent, 2011