Periodic groups, saturated by wreathed groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 56-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an infinite 2–group saturated by the set $\mathfrak{S}=\{($
Mots-clés : saturation
Keywords: groups saturated by current set of groups, wreathed groups.
@article{SEMR_2013_10_a4,
     author = {A. A. Shlyopkin},
     title = {Periodic groups, saturated by wreathed groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a4/}
}
TY  - JOUR
AU  - A. A. Shlyopkin
TI  - Periodic groups, saturated by wreathed groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 56
EP  - 64
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a4/
LA  - ru
ID  - SEMR_2013_10_a4
ER  - 
%0 Journal Article
%A A. A. Shlyopkin
%T Periodic groups, saturated by wreathed groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 56-64
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a4/
%G ru
%F SEMR_2013_10_a4
A. A. Shlyopkin. Periodic groups, saturated by wreathed groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 56-64. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a4/

[1] J. L. Alperin, R. Brauer, D. Gorenstein, “Finite simple groups of 2-rank two”, Scripta math., 29:3–4 (1973), 191–214 | MR | Zbl

[2] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[3] D. V. Lytkina, “O 2-gruppakh, konechnye podgruppy kotorykh obladayut zadannymi svoistvami”, Vladikavk. matem. zhurn., 13:4 (2011), 35–-39 | MR

[4] D. V. Lytkina, “O chastichnom obobschenii odnogo rezultata Makdonalda”, Sib. elektron. matem. izv., 8 (2011), 369–371 | MR

[5] A. K. Shlepkin, “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, Sb. tezisov 3-i mezhdunar. konf. po algebre (Krasnoyarsk, 1993), 363

[6] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, izd. Lan, 2009 | MR

[7] A. A. Kuznetsov, K. A. Filippov, “Gruppy, nasyschennye zadannym mnozhestvom grupp”, Sib. elektron. matem. izv., 8 (2011), 230–-246 | MR