Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a34, author = {E. I. Shamaev}, title = {The discrete geometric bisectors flow of strictly convex polygons and its convergence questions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {641--648}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a34/} }
TY - JOUR AU - E. I. Shamaev TI - The discrete geometric bisectors flow of strictly convex polygons and its convergence questions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 641 EP - 648 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a34/ LA - ru ID - SEMR_2013_10_a34 ER -
E. I. Shamaev. The discrete geometric bisectors flow of strictly convex polygons and its convergence questions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 641-648. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a34/
[1] E. I. Shamaev, “Skhodimost odnoi iteratsionnoi posledovatelnosti, voznikayuschei v diskretnykh analogakh potokov obratnoi srednei krivizny”, Matematicheskie zametki YaGU, 17:1 (2010), 149–153 | MR | Zbl
[2] A. M. Bruckstein, G. Sapiro, D. Shaked, “Evolutions of planar polygons”, International J. of Pattern Recognition and Artificial Intelligence, 9:6 (1995), 991–1014 | DOI
[3] A. Imiya, U. Eckhardt, “Discrete Mean Curvature Flow”, Proceedings of the Second International Conference on Scale-Space Theories in Computer Vision, SCALE-SPACE'99, Springer-Verlag, London, 1999, 477–482 | DOI