On a method of volume calculation for bodies
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 615-626
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we propose some integral formulae for volumes of bodies with known boundaries in the spaces of constant curvature of arbitrary dimension with some examples of their applications.
Keywords:
models of spaces of constant curvature, prizmo- and ball-like bodies
Mots-clés : volumes and algebraic volumes, polygons, symplices.
Mots-clés : volumes and algebraic volumes, polygons, symplices.
@article{SEMR_2013_10_a33,
author = {I. Kh. Sabitov},
title = {On a method of volume calculation for bodies},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {615--626},
year = {2013},
volume = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a33/}
}
I. Kh. Sabitov. On a method of volume calculation for bodies. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 615-626. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a33/
[1] I. Kh. Sabitov, Chemu ravna summa uglov mnogougolnika?, Kvant, 3 (2001), 6–12
[2] B. A. Rozenfeld, Neevklidovy prostranstva, Nauka, M., 1969 | MR
[3] D. V. Alekseevskii, E. B. Vinberg, A. S. Solodovnikov, “Geometriya prostranstv postoyannoi krivizny”, Geometriya – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 29, VINITI, M., 1988, 5–146
[4] D. A. Derevnin, A. D. Mednykh, “O formule ob'ema giperbolicheskogo tetraedra”, UMN, 60:2 (2005), 159–160 | DOI | MR
[5] Á. G. Horváth, “Formulas on hyperbolic volume”, Aequationes mathematicae, 83:1–2 (2012), 97–116 | DOI | MR | Zbl