Amenability of Closed Subgroups and Orlicz Spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 583-590

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a closed subgroup $H$ of a second countable locally compact group $G$ is amenable if and only if its left regular representation on an Orlicz space $L^\Phi(G)$ for some $\Delta_2$-regular $N$-function $\Phi$ almost has invariant vectors. We also show that a noncompact second countable locally compact group $G$ is amenable if and ony if the first cohomology space $H^1(G,L^\Phi(G))$ is non-Hausdorff for some $\Delta_2$-regular $N$-function $\Phi$.
Keywords: locally compact group, second countable group, closed subgroup, $N$-function, Orlicz space, 1-cohomology.
Mots-clés : amenable group
@article{SEMR_2013_10_a32,
     author = {Ya A. Kopylov},
     title = {Amenability of {Closed} {Subgroups} and {Orlicz} {Spaces}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {583--590},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a32/}
}
TY  - JOUR
AU  - Ya A. Kopylov
TI  - Amenability of Closed Subgroups and Orlicz Spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 583
EP  - 590
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a32/
LA  - en
ID  - SEMR_2013_10_a32
ER  - 
%0 Journal Article
%A Ya A. Kopylov
%T Amenability of Closed Subgroups and Orlicz Spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 583-590
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a32/
%G en
%F SEMR_2013_10_a32
Ya A. Kopylov. Amenability of Closed Subgroups and Orlicz Spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 583-590. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a32/